Skip to main content

Sulfidation of Nickel in Laterite Ore with Sulfur

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Temperature is an important factor affecting the sulfidation of laterite ore. The effect of temperature on the sulfidation of nickel in laterite ore was studied. The thermodynamic analysis shows that the sulfidation reactions of nickel oxide and iron oxide can be carried out at temperatures above 400 ºC and increasing temperature will promote the reactions. High sulfidation of nickel at high temperature will be achieved by regulating the partial pressure of sulfur and oxygen. In the atmosphere of high sulfur and low oxygen pressure, nickel and iron mainly exist in the form of sulfides. With the increase of temperature from 400 ℃ to 1200 ℃, the sulfidation degree of nickel in the ore increased initially and then decreased. At 1100 ºC, the sulfidation degree of nickel in the ore was the highest, reaching 84.43%. The size of nickel sulfide particles increased to about 10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Supriyatna YI, Sihotang IH, Sudibyo (2019) Preliminary study of smelting of Indonesian nickel laterite ore using an electric arc furnace. Mater Today Proc 13:127–131

    Google Scholar 

  2. Chen S, Guo S, Jiang L, Xu Y, Ding W (2015) Thermodynamic of selective reduction of laterite ore by reducing gases. T Nonferr Metal Soc 25(9):3133–3138

    Article  CAS  Google Scholar 

  3. Pintowantoro S, Abdul F (2019) Selective reduction of laterite ore. Mater Trans 60(11):2245–2254

    Article  CAS  Google Scholar 

  4. Pandey N, Tripathy S, Patra S, Jha G (2022) Recent progress in hydrometallurgical processing of nickel lateritic ore. Trans Indian Inst Metal. https://doi.org/10.1007/s12666-022-02706-2

  5. Xu D, Liu L, Quast K, Addai-Mensah J, Robinson D (2013) Effect of nickel laterite agglomerate properties on their leaching performance. Adv Powder Technol 24(4):750–756

    Article  CAS  Google Scholar 

  6. Quast K, Addai-Mensah J, Skinner W (2017) Preconcentration strategies in the processing of nickel laterite ores Part 5: effect of mineralogy. Miner Eng 110:31–39

    Article  CAS  Google Scholar 

  7. Luo W, Feng Q, Ou L, Zhang G, Lu Y (2009) Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy 96(1–2):171–175

    Article  CAS  Google Scholar 

  8. Ma B, Yang W, Yang B, Wang C, Chen Y, Zhang Y (2015) Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy 155:88–94

    Article  CAS  Google Scholar 

  9. Ilyas S, Srivastava R, Kim H, Ilyas N, Sattar R (2020) Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep Purif Technol 232:115971

    Google Scholar 

  10. Gao J, Li W, Ma S, Du Z, Cheng F (2021) Spinel ferrite transformation for enhanced upgrading nickel grade in laterite ore of various types. Miner Eng 163(4):106795

    Article  CAS  Google Scholar 

  11. Harris C, Peacey J, Pickles C (2013) Selective sulphidation and flotation of nickel from a nickeliferous laterite ore. Miner Eng 54:21–31

    Article  CAS  Google Scholar 

  12. Harris C, Peacey J, Pickles C (2010) Selective sulphidation of a nickeliferous lateritic ore. Miner Eng 24(7):651–660

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization (738010570) and the Science and Technology Planning Project of Hunan Province, China (2019RS2008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfeng Yu or Zhiwei Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, S., Yu, J., Ma, Y., Zhong, Q., Rao, M., Peng, Z. (2023). Sulfidation of Nickel in Laterite Ore with Sulfur. In: Zhang, M., et al. Characterization of Minerals, Metals, and Materials 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22576-5_54

Download citation

Publish with us

Policies and ethics