Skip to main content

Reduction of Friction and Adhesion in Copper and Brass Extrusion by Application of Boron Containing Surface Modifications

  • Conference paper
  • First Online:
TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1705 Accesses

Abstract

Due to extensive abrasion and adhesion, tools for copper and brass extrusion are subject to considerable wear. In the present study, the effect of boron containing surface modifications on friction and adhesion was investigated by means of a high-temperature, high-speed friction test for extrusion. A Ti-Si-B-C-N nanocomposite coating and a boridic diffusion layer were applied to hot work tool steel 1.2367 and nickel-based alloy 2.4668, respectively. Using billets made of copper alloy CW024A and brass alloy CW724R, the friction tests were performed at high temperatures and normal pressures typical of the extrusion process. The evaluation of the obtained test data indicates a significant influence of the Ti-Si-B-C-N nanocomposite coating on the friction and adhesion behavior of the investigated material pairings. While friction and adhesion are greatly reduced for the Ti-Si-B-C-N coating, the effect of the boridic diffusion layer is substantially less.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauser M, Sauer G, Siegert K (2001) Strangpressen. Aluminium-Verlag, Düsseldorf

    Google Scholar 

  2. Schwartz M, Ciocoiu R, Gheorghe D, Ciuca I (2014) Failures of AISI H21 die in copper hot extrusion. Mater High Temp 31(2):95–101. https://doi.org/10.1179/1878641313Y.0000000001

    Article  CAS  Google Scholar 

  3. Buckley DH (1981) Surface effects in adhesion, friction, wear, and lubrication. Elsevier, New York

    Google Scholar 

  4. Clode MP, Sheppard T (1990) Formation of die lines during extrusion of AA6063. Mater Sci Technol 6(8):755–763. https://doi.org/10.1179/mst.1990.6.8.755

    Article  CAS  Google Scholar 

  5. Thedja WW, Müller K, Ruppin D (1993) Die Vorgänge im Presskanal beim Strangpressen von Aluminium, Teil 2: Reibung im Presskanal und Matrizenverschleiß. Aluminium 69(7):649–653

    CAS  Google Scholar 

  6. Lin J, Moore JJ, Mishra B, Pinkas M, Sproul WD (2010) The structure and mechanical and tribological proberties of TIBCN nanocomposite coatings. Acta Mater 58(5):1554–1564. https://doi.org/10.1016/j.actamat.2009.10.063

    Article  CAS  Google Scholar 

  7. Behrens BA, Bräuer G, Paschke H, Bistron M (2011) Reduction of wear at hot forging dies by using coating systems containing boron. Prod Eng Res Devel 5:497–506. https://doi.org/10.1007/s11740-011-0308-z

    Article  Google Scholar 

  8. Gissler W (1994) Structure and properties of Ti-B-N Coatings. Surf Coat Technol 68(69):556–563. https://doi.org/10.1016/0257-8972(94)90217-8

    Article  Google Scholar 

  9. Karvankova P, Vepřek-Heijmann M, Azinovic D, Vepřek S (2006) Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition. Surf Coat Technol 200(9):2978–2989. https://doi.org/10.1016/j.surfcoat.2005.01.003

    Article  CAS  Google Scholar 

  10. Vepřek S, Vepřek-Heijman M, Karvankova P, Prochazka J (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29. https://doi.org/10.1016/j.tsf.2004.10.053

    Article  CAS  Google Scholar 

  11. Chen X, Ma S, Xu K, Chu PK (2012) Oxidation behavior of Ti-B-C-N coatings deposited by reactive magnetron sputtering. Vacuum 86(10):1505–1512. https://doi.org/10.1016/j.vacuum.2012.03.001

    Article  CAS  Google Scholar 

  12. Seifert HJ (ed) (2005) Refractory and hard materials in the Ti-Si-B-C-N system: phase equilibria, phase reactions and thermal Stabilities. University of Florida, Gainesville

    Google Scholar 

  13. Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga T, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126(1):25–30. https://doi.org/10.1016/S0257-8972(00)00517-X

    Article  CAS  Google Scholar 

  14. Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115(1):239–244. https://doi.org/10.1016/j.matchemphys.2008.11.055

    Article  CAS  Google Scholar 

  15. Makuch M, Kulka M (2014) Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl Surf Sci 314:1007–1018. https://doi.org/10.1016/j.apsusc.2014.06.109

    Article  CAS  Google Scholar 

  16. Makuch M (2020) Nanomechanical properties and fracture toughness of hard ceramic layer produced by gas boriding of Inconel 600 alloy. T Nonferr Metal Soc 30(2):428–448. https://doi.org/10.1016/S1003-6326(20)65224-4

    Article  CAS  Google Scholar 

  17. Deng DW, Wang CG, ALiu QQ, Niu TT (2015) Effect of standard heat treatment on microstructure and properties of borided Inconel 718 T. Nonferr Metal Soc 25(2):437–443.https://doi.org/10.1016/S1003-6326(15)63621-4

  18. Campos-Silva I, Contla-Pacheco AD, Ruiz-Rios A, Martínez-Trinidad J, Rodríguez-Castro G, Meneses-Amador A, Wong-Angel WD (2018) Effects of scratch tests on the adhesive and cohesive properties of borided Inconel 718 superalloy. Surf Coat Technol 349:917–927.https://doi.org/10.1016/j.surfcoat.2018.05.086

  19. Campos-Silva I, Contla-Pacheco AD, Figueroa-López U, Martínez-Trinidad J, Garduño-Alva A, Ortega-Avilés M (2019) Sliding wear resistance of nickel boride layers on an Inconel 718 superalloy. Surf Coat Technol 378:124862. https://doi.org/10.1016/j.surfcoat.2019.06.099

  20. Sanabria S, Müller S, Reimers W (2013) A new high speed friction test for extrusion processes. Key Eng Mater 585:33–39. https://doi.org/10.4028/www.scientific.net/KEM.585.33

    Article  Google Scholar 

  21. Hora P, Gorji M, Berisha B (2011) Modeling of friction phenomena in extrusion processes by using a new torsion-friction test. Key Eng Mater 491:129–135. https://doi.org/10.4028/www.scientific.net/kem.491.129

    Article  Google Scholar 

  22. Ma S, Li Y, Xu K (2001) The composite of nitrided steel of H13 and TiN coatings by plasma duplex treatment and the effect of pre-nitriding. Surf Coat Technol 137(2–3):116–121. https://doi.org/10.1016/S0257-8972(00)01073-2

    Article  CAS  Google Scholar 

  23. Zlatanović M, Gredić T, Popović N, Bogdanov Ž (1993) Matching of TiN coating structures by plasma nitriding of substrates. Vacuum 44(2):83–88. https://doi.org/10.1016/0042-207X(93)90353-C

    Article  Google Scholar 

  24. Lechner S, Nitschke R, Müller S (2021) Numerical analysis of plastic die deformation during high temperature copper extrusion. Paper presented at ESAFORM 2021, 24th International Conference on Material Forming, Liège, Belgium. https://doi.org/10.25518/esaform21.4785

  25. Sanabria V (2016) Friction in long bearing channels during multi-hole extrusion of aluminium alloy: experimental and numerical investigations. PhD thesis, TU Berlin

    Google Scholar 

  26. Wanheim T, Bay N (1978) A model for friction in metal forming processes. CIRP Ann Manuf Technol 27:189–193

    Google Scholar 

  27. Dautzenberg JH, Zaat JH (1973) Quantitative determination of deformation by sliding wear. Wear 23:9–19. https://doi.org/10.1016/0043-1648(73)90036-7

    Article  Google Scholar 

  28. Humphreys FJ, Hatherly M (2004) Recristallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  29. Wuttke W (1987) Tribophysik, Reibung und Verschleiß von Metallen. Hanser, Munich

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) [grant No. 19862 N].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lechner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lechner, S., Thewes, A., Müller, S. (2023). Reduction of Friction and Adhesion in Copper and Brass Extrusion by Application of Boron Containing Surface Modifications. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_36

Download citation

Publish with us

Policies and ethics