Skip to main content

Fundamentals of Solid Oxide Electrolysis Cells (SOEC)

  • Chapter
  • First Online:
High Temperature Electrolysis

Part of the book series: Lecture Notes in Energy ((LNEN,volume 95))

  • 1599 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barelli B, Bidini G, Cinti G (2017) Airflow management in solid oxide electrolyzer (SOE) operation: performance analysis. ChemEngineering 1(2):13

    Article  Google Scholar 

  • Barsoukov E, MacDonald JR (2005) In: Impedance spectroscopy, Wiley, Hoboken, New Jersey

    Google Scholar 

  • Chen K, Jiang SP (2016) Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 163(11):F3070–F3083

    Article  Google Scholar 

  • Ciucci F, Chen C (2015) Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical approach. Electrochim Acta 167:439–454

    Article  Google Scholar 

  • Ebbesen SD, Graves C, Hauch A, Jensen SH, Mogensen M (2010) Poisoning of solid oxide electrolysis cells by impurities. J Electrochem Soc 157:B1419–B1429

    Article  Google Scholar 

  • EERA (2020) Key performance indicators (KPIs) for FCH research and innovation, 2020–2030

    Google Scholar 

  • Fang Q, Blum L, Stolten D (2019) Electrochemical performance and degradation analysis of an SOFC short stack following operation of more than 100,000 hours. 166(16):F1320–F1325

    Google Scholar 

  • Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011a) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15(1):1–23

    Article  Google Scholar 

  • Graves C, Ebbesen SD, Mogensen M (2011b) Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ionics 192(1):398–403

    Article  Google Scholar 

  • Harrison KW, Remick R, Hoskin A, Martin G (2010) Hydrogen production: fundamentals and case study summaries. (National Renewable Energy Lab (NREL), Golden, CO (United States))

    Google Scholar 

  • Hauch A et al (2020) Recent advances in solid oxide cell technology for electrolysis. Science 370(6513):6118

    Article  Google Scholar 

  • Heyne L (1968) Ionic conductivity in oxides. In: Mass transport in oxides. NBS Special Publications 296:149–164

    Google Scholar 

  • Independent Review Team (2017) Measurement of hydrogen production rate based on dew point temperatures. U. S. Department of Energy Hydrogen Program, NREL/MP-150–42237

    Google Scholar 

  • Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB (2016) Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1:15014

    Article  Google Scholar 

  • Jensen SH, Hauch A, Hendriksen PV, Mogensen M, Bonanos N, Jacobsen T (2007) A method to separate process contributions in impedance spectra by variation of test conditions. J Electrochem Soc 154:B1325–B1330

    Article  Google Scholar 

  • Kim J et al (2013) Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization. Int J Hydrogen Energy 38(3):1225–1235

    Article  Google Scholar 

  • Knibbe R et al (2010) Solid oxide electrolysis cells: degradation at high current densities. J Electrochem Soc 157(8):B1209

    Article  Google Scholar 

  • Königshofer B, Pongratz G, Nusev G, Boškoski P, Höber M, Juričić D, Kusnezoff M, Trofimenko N, Schröttner H, Hochenauer C, Subotić V (2021) Development of test protocols for solid oxide electrolysis cells operated under accelerated degradation conditions. J Power Sour 497:230982

    Google Scholar 

  • Küngas R (2020) Review—electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J Electrochem Soc 167(4):044508

    Article  Google Scholar 

  • Laguna-Bercero MA et al. (2011) Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation. J Power Sour 196(21):8942―7

    Google Scholar 

  • Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sour 203:4–16

    Article  Google Scholar 

  • Lang M, Raab S, Lemcke MS, Bohn C, Pysik M (2020) Long-term behavior of a solid oxide electrolyzer (SOEC) stack. Fuel Cells 20(6):690–700

    Article  Google Scholar 

  • Larminie J, Dicks A, McDonald MS (2018) In: Fuel cell systems explained, J. Wiley Chichester, UK

    Google Scholar 

  • Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J Electrochem Soc 155:B36–B41

    Article  Google Scholar 

  • Lvovich VF (2008) Impedance spectroscopy. J. Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  • Mawdsley JR et al (2009) Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks. Int J Hydrogen Energy 34(9):4198–4207

    Article  Google Scholar 

  • Mcdonald JR (1987) Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J Electroanal Chem 223(1–2):25–50

    Article  Google Scholar 

  • Moçoteguy P, Brisse A (2013) A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrogen Energy 38(36):15887–15902

    Article  Google Scholar 

  • Nechache A, Cassir M, Ringuedé A (2014) Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: a review. J Power Sour 258:164–181

    Article  Google Scholar 

  • Nechache A, Boukamp BA, Cassir M, Ringuedé A (2019) Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23(3):871–881

    Article  Google Scholar 

  • Saccoccio M et al (2014) Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and lasso regression methods—a theoretical and experimental study. Electrochim Acta 147:470–482

    Article  Google Scholar 

  • Schefold J, Brisse A, Poepke H (2017) 23,000 h steam electrolysis with an electrolyte supported solid oxide cell. Int J Hydrogen Energy 42(19):13415–13426

    Article  Google Scholar 

  • Schichlein H, Müller AC, Voigts M, Krügel A, Ivers-Tiffée E (2002) Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem 32(8):875–882

    Article  Google Scholar 

  • Sohal MS, O’Brien JE, Stoots CM, Sharma VI, Yildiz B, Virkar A (2012) Degradation issues in solid oxide cells during high temperature electrolysis. J Fuel Cell Sci Technol 9:011017

    Article  Google Scholar 

  • Song J, Zhu T, Chen X, Ni W, Zhong Q (2020) Cobalt and Titanium substituted SrFeO3 based perovskite as efficient symmetrical electrode for solid oxide fuel cell. J Materiomics 6(2):377–384

    Article  Google Scholar 

  • Subotić V, Futamura S, Harrington GF, Matsuda J, Natsukoshi K, Sasaki K (2021) Towards understanding of oxygen electrode processes during solid oxide electrolysis operation to improve simultaneous fuel and oxygen generation. J Power Sour 492:229600

    Article  Google Scholar 

  • Virkar AV (1991) Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes: electrolyte stability. J Electrochem Soc 138(5):1481–1487

    Article  Google Scholar 

  • Virkar AV (2001) Transport of H2, O2 and H2O through single-phase, two-phase and multi-phase mixed proton, oxygen ion, and electron hole conductors. Solid State Ionics 140(3):275–283

    Article  Google Scholar 

  • Virkar AV (2005) Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. J Power Sour 147(1–2):8–31

    Article  Google Scholar 

  • Virkar AV (2007) A model for solid oxide fuel cell (SOFC) stack degradation. ECS Trans 7(1):443–454

    Article  Google Scholar 

  • Virkar AV (2012) Transport through mixed proton, oxygen ion and electron/hole conductors: analysis of fuel cells and electrolyzer cells using Onsager equations. Int J Hydrogen Energy 37(17):12609–12628

    Article  Google Scholar 

  • Virkar AV (2010) Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrogen Energy 35(18):9527–9543

    Article  Google Scholar 

  • Virkar AV, Tao G (2015) Reversible high temperature cells for power generation and hydrogen production using mixed ionic electronic conducting solid electrolytes. Int J Hydrogen Energy 40(16):5561–5577

    Article  Google Scholar 

  • Vøllestad E et al (2019) Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat Mater 18(7):752–759

    Article  Google Scholar 

  • Wan TH, Saccoccio M, Chen C, Ciucci F (2015) Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 184:483–499

    Article  Google Scholar 

  • Wang Y, Leung DYC, Xuan J, Wang H (2017) A review on unitized regenerative fuel cell technologies, part B: unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew Sustain Energy Rev 75:775–795

    Article  Google Scholar 

  • Wang Y et al (2020) Degradation of solid oxide electrolysis cells: phenomena, mechanisms, and emerging mitigation strategies—a review. J Mater Sci Technol 55:35–55

    Article  Google Scholar 

  • Wang Q, Hu Z, Xu L, Li J, Gan Q, Du X, Ouyang M (2021) A comparative study of equivalent circuit model and distribution of relaxation times for fuel cell impedance diagnosis. Int J Energy Res 45:15948–15961

    Article  Google Scholar 

  • Yager WA (1936) The distribution of relaxation times in typical dielectrics. J Appl Phys 7(12):434–450

    Google Scholar 

  • Zhu L, Zhang L, Virkar AV (2017) Role of electronic conduction in stability of solid oxide electrolyzer cells (SOEC). ECS Trans 80(9):81–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Laguna-Bercero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laguna-Bercero, M.A., Wang, Y., Zhou, XD., Zhu, L. (2023). Fundamentals of Solid Oxide Electrolysis Cells (SOEC). In: Laguna-Bercero, M.A. (eds) High Temperature Electrolysis. Lecture Notes in Energy, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-22508-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22508-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22507-9

  • Online ISBN: 978-3-031-22508-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics