Skip to main content

Impact of Modern Anthropogenic Factors on the Hydrological System of the Donbas

  • Chapter
  • First Online:
Systems, Decision and Control in Energy IV

Abstract

The Donbas coal mining complex at the current functioning stage is in the state of critical changes conditioned by the coal industry post-mining stage, self-rehabilitation flooding of unprofitable mines (the “wet conservation” scheme is applied) and its location in the area of the military conflict in the Eastern part of Ukraine. At the mass decommissioning of mines (DM) in the developed (old) coal-mining regions, a comparatively balanced ecological state of the “coal mining complex of the coal mine—environment” natural-technogenic geosystem (NTGS) is disrupted first of all as a result of almost irreversible changes in the surface and underground hydrosphere. The changes in the surface hydrosphere have been monitored on the Google Earth Engine (GEE) platform using the analysis of hourly shots for the rivers using the Normalised Difference Water Index (NDWI), while those in the underground one—using the data received by monitoring of the underground water in the mine shafts and observation boreholes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palamarchuk, M., Zakorchevna, N.: Water fund of Ukraine: reference manual (Vodnyi fond Ukrainy: Dovidkovyi posibnyk), 388 p. Nika-Center, Kyiv (2001) (in Ukrainian)

    Google Scholar 

  2. Udalov, I.V.: Transformation of the geological environment under the influence of man-made processes (in the conditions of the north-eastern Donbass), 176 p. KhNU, Kharkiv (2016) (in Russian)

    Google Scholar 

  3. Liuta, N.H.: Ecological state of the environment and European prospects of Ukraine (Ekolohichnyi stan dovkillia ta Yevropeiski perspektyvy Ukrainy). In: Mineral Resources of Ukraine, vol. 1, pp. 6–11 (2011) (in Ukrainian)

    Google Scholar 

  4. Trofymchuk, O., Yakovliev, Y., Anpilova, Y., Myrontsov, M., Okhariev, V.: Ecological situation of post-mining regions in Ukraine. In: Zaporozhets, A., Artemchuk, V. (eds.) Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control, vol. 346, pp. 293–306 (2021). http://doi.org/10.1007/978-3-030-69189-9_17

  5. Anpilova, Y., Yakovliev, Y., Trofymchuk, O., Myrontsov, M., Karpenko, O.: Environmental hazards of the Donbas hydrosphere at the final stage of the coal mines flooding. In: Zaporozhets, A. (ed.) Systems, Decision and Control in Energy III. Studies in Systems, Decision and Control, vol. 399, pp. 305–316. Springer, Cham (2022). http://doi.org/10.1007/978-3-030-87675-3_19

  6. Liuta, N.H.: Ekolohichnyi stan dovkillia ta yevropeiski perspektyvy Ukrainy. Ecological state of the environment and European prospects of Ukraine. In: Mineral Resources of Ukraine, vol. 1, pp. 6–11 (2011) (in Ukrainian)

    Google Scholar 

  7. Myrontsov, M., Karpenko, O., Trofymchuk, O., Okhariev, V., Anpilova, Y.: Increasing vertical resolution in electrometry of oil and gas wells. In: Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control, vol. 346, pp. 101–117 (2021). http://doi.org/10.1007/978-3-030-69189-9_6

  8. Kotsiuba, I., Lukianova, V., Anpilova, Y., Yelnikova, T., Herasymchuk, O., Spasichenko, O.: The features of eutrophication processes in the water of Uzh river. Ecol. Eng. Environ. Technol. 23(2), 9–15 (2022). http://doi.org/10.12912/27197050/145613

  9. Popov, O.O., et al.: Immersive technology for training and professional development of nuclear power plants personnel. In: CEUR Workshop Proceedings, vol. 2898, pp. 230–254 (2021). http://ceur-ws.org/Vol-2898/paper13.pdf

  10. Popov, O., et al.: Effect of power plant ash and slag disposal on the environment and population health in Ukraine. J. Health Pollut. 11(31), 210910 (2021). https://doi.org/10.5696/2156-9614-11.31.210910

    Article  Google Scholar 

  11. Kyrylenko, Y., Kameneva, I., Popov, O., Iatsyshyn, A., Artemchuk, V., Kovach, V.: Source term modelling for event with liquid radioactive materials spill. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds.) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, vol. 298, pp. 261–279 (2020). http://doi.org/10.1007/978-3-030-48583-2_17

  12. Tarasevich, Yu., Bondarenko, S., Polyakov, V., Zhukova, A., Ivanova, Z., Luk’yanova, V., Malysh, G.: The study of the structural, sorption, and electrochemical properties of a natural composite shungite. Colloid J. 70, 349–355 (2008). http://doi.org/10.1134/S1061933X08030137

  13. Gomilko, A.M., Trofimchuk, A.N.: Asymptotic solution of contact harmonic problem for an impenetrable stamp on a poroelastic base. Int. J. Fluid Mech. Res. 28, 173–184 (2001)

    Article  Google Scholar 

  14. Gomilko, A.M., Gorodetskaya, N.S., Trofimchuk, A.N.: Harmonic vibrations of a rigid impervious punch on a porous elastic base. Int. Appl. Mech. 35, 1277–1286 (1999)

    Article  MATH  Google Scholar 

  15. Trofimchuk, A.N.: Unsteady oscillations of a liquid-saturated poroelastic soil layer. Int. J. Fluid Mech. Res. 29, 10 p (2002)

    Google Scholar 

  16. Trofymchuk, O., Kaliukh, I., Silchenko, K., Polevetskiy, V., Berchun, V., Kalyukh, T.: Use accelerogram of real earthquakes in the evaluation of the stress-strain state of landslide slopes in seismically active regions of Ukraine. In: Engineering Geology for Society and Territory, vol. 2, pp. 1343–1346. Springer, Cham (2015)

    Google Scholar 

  17. Trofimchuk, A.N., Vasyanin, V.A.: Simulation of packing, distribution and routing of small-size discrete flows in a multicommodity network. J. Autom. Inf. Sci. 47 (2015)

    Google Scholar 

  18. Trofymchuk, O., Kalyukh, Y., Hlebchuk, H.: Mathematical and GIS-modeling of landslides in Kharkiv region of Ukraine. In: Landslide Science and Practice: Spatial Analysis and Modelling, pp. 347–352. Springer, Berlin (2013)

    Google Scholar 

  19. Trofymchuk, O., Kalyukh, Yu., Trofimova, I., Hlebchuk, H.: Modelling of landslide hazards in Kharkov region of Ukraine using GIS. In: Landslides: Global Risk Preparedness, pp. 267–276 (2013)

    Google Scholar 

  20. Kratzsch, I.H.: Mining subsidence engineering. Environ. Geol. Water Sci. 8, 133–136 (1986). https://doi.org/10.1007/BF02509900

    Article  Google Scholar 

  21. Preusse, A., Kateloe, H-J., Sroka, A.: Assessment of seismic events in German hard coal mining—occurrence and prediction. In: 10th Underground Coal Operators’ Conference. University of Wollongong and The Australasian Institute of Mining and Metallurgy, pp. 135–138 (2010). https://ro.uow.edu.au/coal/322

  22. Zinke, L.: Post-mining recoveries. Nat. Rev. Earth Environ. 2, 5 (2021). https://doi.org/10.1038/s43017-020-00130-y

    Article  Google Scholar 

  23. Jelen, J., Čábelka, M.: Reflection of mining in mining and post-mining landscapes using cartographic sources. AUC Geogr. 56(1), 44–55 (2020). http://doi.org/10.14712/23361980.2020.23

  24. Bridge, G.: Contested terrain: mining and the environment. Ann. Rev. Environ. Resour. 29, 205–259 (2004). http://doi.org/10.1146/annurev.energy.28.011503.163434

  25. Douglas, I., Lawson, N.: Material flows due to mining and urbanization. In: Ayers, U., Ayers, L.W. (eds.) A Handbook of Industrial Ecology, pp. 351–364 (2000). http://doi.org/10.4337/9781843765479.00040

  26. Brenner, N.: New Urban Spaces: Urban Theory and the Scale Question. Oxford University Press, New York (2019). https://doi.org/10.1093/oso/9780190627188.001.0001

  27. Menegaki, M.E., Kaliampakos, D.C.: Evaluating mining landscape: a step forward. Ecol. Eng. 43, 26–33 (2012). https://doi.org/10.1016/j.ecoleng.2011.02.011

    Article  Google Scholar 

  28. Karan, S.K., Samadder, S.R.: Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities. J. Environ. Manage. 180, 280–290 (2016). https://doi.org/10.1016/j.jenvman.2016.05.042

    Article  Google Scholar 

  29. McFeeters, S.K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features (1996). http://doi.org/10.1080/01431169608948714

  30. Ghansah, B., Foster, T., Higginbottom, T.P., Adhikari, R., Zwart, S.J.: Monitoring spatial-temporal variations of surface areas of small reservoirs in Ghana’s Upper East Region using Sentinel-2 satellite imagery and machine learning (2022). http://doi.org/10.1016/J.PCE.2021.103082

  31. Alcaras, E., Falchi, U., Parente, C., Vallario, A.: Accuracy evaluation for coastline extraction from Pléiades imagery based on NDWI and IHS pan-sharpening application (2022). https://doi.org/10.1007/S12518-021-00411-1

  32. Dominici, D., Zollini, S., Alicandro, M., Torre, F. D., Buscema, P., Baiocchi, V.: High resolution satellite images for instantaneous shoreline extraction using new enhancement algorithms (2019). https://doi.org/10.3390/GEOSCIENCES9030123

  33. DaSilva, M., Silva, G. M. da, Hesp, P. A., Bruce, D., Keane, R., Moore, C.: Assessing shoreline change using historical aerial and rapideye satellite imagery (Cape Jaffa, South Australia) (2021). http://doi.org/10.2112/JCOASTRES-D-20-00089.1

  34. Cavallo, C., Nones, M., Papa, M.N., Gargiulo, M., Ruello, G.: Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto Int. 1–23 (2021)

    Google Scholar 

  35. Jing, W., Cui, B., Lu, Y., Huang, L.: BS-Net: using joint-learning boundary and segmentation network for coastline extraction from remote sensing images. Remote Sens. Lett. 12, 1260–1268 (2021). https://doi.org/10.1080/2150704X.2021.1979271

  36. Bruckmann, L., Delbart, N., Descroix, L., Bodian, A.: Recent hydrological evolutions of the Senegal river flood (West Africa). Hydrol. Sci. J. 1–16 (2022)

    Google Scholar 

  37. https://github.com/3liz/QuickOSM

  38. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2#terms-of-use

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevheniia Anpilova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anpilova, Y., Dovgyi, S., Yakovliev, Y., Hordiienko, O., Myrontsov, M., Karpenko, O. (2023). Impact of Modern Anthropogenic Factors on the Hydrological System of the Donbas. In: Zaporozhets, A., Popov, O. (eds) Systems, Decision and Control in Energy IV. Studies in Systems, Decision and Control, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-031-22500-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22500-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22499-7

  • Online ISBN: 978-3-031-22500-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics