Skip to main content

Lung Cancer Emergencies

  • Chapter
  • First Online:
Airway diseases
  • 36 Accesses

Abstract

Lung cancer itself can be associated with fatal complications, and some anticancer treatments can cause disability, morbidity, or mortality. Herein, we will discuss the pericardial tamponade, venous thromboembolism, pleural effusion, vena cava superior syndrome, brain metastasis, spinal cord compression, hypercalcemia, and febrile neutropenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Imazio M, De Ferrari GM. Cardiac tamponade: an educational review. European heart journal. Acute Card Care. 2020:2048872620939341. Advance online publication. https://doi.org/10.1177/2048872620939341.

  2. Søgaard KK, Farkas DK, Ehrenstein V, et al. Pericarditis as a marker of occult cancer and a prognostic factor for cancer mortality. Circulation. 2017;136(11):9961006. https://doi.org/10.1161/CIRCULATIONAHA.116.024041.

    Article  Google Scholar 

  3. Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, Asamura H, Goldstraw P, International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Board Members and Participating Institutions. The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9(11):1618–24. https://doi.org/10.1097/JTO.

    Article  CAS  PubMed  Google Scholar 

  4. Wagner PL, McAleer E, Stillwell E, et al. Pericardial effusions in the cancer population: prognostic factors after pericardial window and the impact of paradoxical hemodynamic instability. J Thorac Cardiovasc Surg. 2011;141(1):34–8. https://doi.org/10.1016/j.jtcvs.2010.09.015.

    Article  PubMed  Google Scholar 

  5. Niclauss L, Montemurro M, Prêtre R. Survival after surgical drainage of malignant pericardial effusion. World J Surg. 2015;39(7):1767–72. https://doi.org/10.1007/s00268-015-3025-5.

    Article  PubMed  Google Scholar 

  6. Ning MS, Tang L, Gomez DR, et al. Incidence and predictors of pericardial effusion after Chemoradiation therapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;99(1):70–9. https://doi.org/10.1016/j.ijrobp.2017.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Imazio M, Adler Y. Management of pericardial effusion. Eur Heart J. 2013;34(16):1186–97. https://doi.org/10.1093/eurheartj/ehs372.

    Article  PubMed  Google Scholar 

  8. Adler Y, Charron P, Imazio M, Badano L, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64. https://doi.org/10.1093/eurheartj/ehv318.

    Article  PubMed  Google Scholar 

  9. Ristić AD, Imazio M, Adler Y, et al. Triage strategy for urgent management of cardiac tamponade: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2014;35(34):2279–84. https://doi.org/10.1093/eurheartj/ehu217.

    Article  PubMed  Google Scholar 

  10. Restrepo CS, Lemos DF, Lemos J, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiographics. 2007;27(6):1595–610. https://doi.org/10.1148/rg.276065002.

    Article  PubMed  Google Scholar 

  11. Kumar R, Sinha A, Lin M, et al. Complications of pericardiocentesis: a clinical synopsis. Int J Crit Illn Inj Sci. 2015;5(3):206–12. https://doi.org/10.4103/2229-5151.165007.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vaitkus PT, Herrmann HC, LeWinter MM. Treatment of malignant pericardial effusion. JAMA. 1994;272(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  13. Virk SA, Chandrakumar D, Villanueva C, et al. Systematic review of percutaneous interventions for malignant pericardial effusion. Heart. 2015;101(20):1619–26. https://doi.org/10.1136/heartjnl-2015-307907.

    Article  CAS  PubMed  Google Scholar 

  14. Khorana AA, Francis CW, Culakova E, et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thrombosis Haemostasis JTH. 2007;5(3):632–4. https://doi.org/10.1111/j.1538-7836.2007.02374.x.

    Article  CAS  Google Scholar 

  15. Sørensen HT, Mellemkjaer L, Olsen JH, et al. Prognosis of cancers associated with venous thromboembolism. N Engl J Med. 2000;343(25):1846–50. https://doi.org/10.1056/NEJM200012213432504.

    Article  PubMed  Google Scholar 

  16. Nichols L, Saunders R, Knollmann FD. Causes of death of patients with lung cancer. Arch Pathol Lab Med. 2012;136(12):1552–7. https://doi.org/10.5858/arpa.2011-0521-OA.

    Article  PubMed  Google Scholar 

  17. Zhang Q, Ming J, Li Y, et al. Heparanase expression correlates with angiogenesis and lymphangiogenesis in human lung cancer. Zhongguo fei ai za zhi =. Chin J Lung Cancer. 2009;12(8):864–7. https://doi.org/10.3779/j.issn.1009-3419.2009.08.06.

    Article  Google Scholar 

  18. Roberts KE, Hamele-Bena D, Saqi A, et al. Pulmonary tumor embolism: a review of the literature. Am J Med. 2003;115(3):228–32. https://doi.org/10.1016/s0002-9343(03)00305-x.

    Article  PubMed  Google Scholar 

  19. Xiong W, Zhao Y, Xu M, et al. The relationship between tumor markers and pulmonary embolism in lung cancer. Oncotarget. 2017;8(25):41412–21. https://doi.org/10.18632/oncotarget.17916.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ma L, Wen Z. Risk factors and prognosis of pulmonary embolism in patients with lung cancer. Medicine. 2017;96(16):e6638. https://doi.org/10.1097/MD.0000000000006638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hogg K, Brown G, Dunning J, et al. Diagnosis of pulmonary embolism with CT pulmonary angiography: a systematic review. Emerg Med J. 2006;23(3):172–8. https://doi.org/10.1136/emj.2005.029397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Key NS, Khorana AA, Kuderer N, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2020;38(5):496–520. https://doi.org/10.1200/JCO.19.01461.

    Article  PubMed  Google Scholar 

  23. Hakoum MB, Kahale LA, Tsolakian IG, et al. Anticoagulation for the initial treatment of venous thromboembolism in people with cancer. Cochrane Database Syst Rev. 2018;1(1):CD006649. Published 2018 Jan 24. https://doi.org/10.1002/14651858.CD006649.pub7.

    Article  PubMed  Google Scholar 

  24. McBane RD 2nd, Wysokinski WE, Le-Rademacher, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Thrombosis Haemostasis JTH. 2020;18(2):411–21. https://doi.org/10.1111/jth.14662.

    Article  CAS  Google Scholar 

  25. Young AM, Marshall A, Thirlwall J, et al. Comparison of an Oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J Clin Oncol. 2018;36(20):2017–23. https://doi.org/10.1200/JCO.2018.78.8034.

    Article  CAS  PubMed  Google Scholar 

  26. Giustozzi M, Agnelli G, Del Toro-Cervera J, et al. Direct Oral anticoagulants for the treatment of acute venous thromboembolism associated with cancer: a systematic review and meta-analysis. Thromb Haemost. 2020;120(7):1128–36. https://doi.org/10.1055/s-0040-1712098.

    Article  PubMed  Google Scholar 

  27. van Doormaal FF, Raskob GE, Davidson BL, et al. Treatment of venous thromboembolism in patients with cancer: subgroup analysis of the Matisse clinical trials. Thromb Haemost. 2009;101(4):762–9.

    Article  PubMed  Google Scholar 

  28. Chai-Adisaksopha C, Iorio A, Crowther MA, et al. Vitamin K antagonists after 6 months of low-molecular-weight heparin in cancer patients with venous thromboembolism. Am J Med. 2018;131(4):430–7. https://doi.org/10.1016/j.amjmed.2017.11.042.

    Article  CAS  PubMed  Google Scholar 

  29. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458–64. https://doi.org/10.1001/archinte.166.4.458.

    Article  PubMed  Google Scholar 

  30. Antony VB, Loddenkemper R, Astoul P, et al. Management of malignant pleural effusions. Am J Respir Crit Care Med. 2000;162:1987–2001.

    Article  Google Scholar 

  31. Roberts ME, Neville E, Berrisford RG, et al. Management of a malignant pleural effusion: British Thoracic Society pleural disease guideline. Thorax. 2010;65 Suppl 2:ii32–40.

    PubMed  Google Scholar 

  32. Epelbaum O, Rahman NM. Contemporary approach to the patient with malignant pleural effusion complicating lung cancer. Ann Transl Med. 2019;7:352. https://doi.org/10.21037/atm.2019.03.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morgensztern D, Waqar S, Subramanian J, et al. Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non–small-cell lung cancer. J Thorac Oncol. 2012;7:1485–9.

    Article  PubMed  Google Scholar 

  34. Meyer PC. Metastatic carcinoma of the pleura. Thorax. 1966;21:437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Psallidas I, Kalomenidis I, Porcel JM, et al. Malignant pleural effusion: from bench to bedside. Eur Respir Rev. 2016;25:189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heffner JE, Klein JS. Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin Proc. 2008;83:235–50.

    Article  PubMed  Google Scholar 

  37. Judson M, Sahn SA. Pulmonary physiologic abnormalities caused by pleural disease. Semin Respir Crit Care Med. 1995;16:346–53.

    Article  Google Scholar 

  38. Light RW. Pleural diseases. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2007.

    Google Scholar 

  39. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, Hale D, Dunn JA, Lyman GH, Hutchinson C, MacCallum P, Kakkar A, Hobbs FDR, Petrou S, Dale J, Poole CJ, Maraveyas A, Levine M. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017–2023. https://doi.org/10.1200/JCO.2018.78.8034. Epub 2018 May 10. PMID: 29746227.

  40. Jimenez D, Diaz G, Gil D, et al. Etiology and prognostic significance of massive pleural effusions. Respir Med. 2005;99:1183–7.

    Article  PubMed  Google Scholar 

  41. Nam HS. Malignant pleural effusion: medical approaches for diagnosis and management. Tuberc Respir Dis. 2014;76:211–7.

    Article  Google Scholar 

  42. Desai NR, Lee HJ. Diagnosis and management of malignant pleural effusions: state of the art in 2017. J Thorac Dis. 2017;9(Suppl 10):S1111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Asciak R, Rahman NM. Malignant pleural effusion from diagnostics to therapeutics. Clin Chest Med. 2018;39:181–93.

    Article  PubMed  Google Scholar 

  44. Porcel JM, Pardina M, Bielsa S, et al. Derivation and validation of a CT scan scoring system for discriminating malignant from benign pleural effusions. Chest. 2015;147:513–9.

    Article  PubMed  Google Scholar 

  45. Coolen J, De Keyzer F, De Wever W, et al. Malignant pleural disease: diagnosis by using diffusion-weighted and dynamic contrast-enhanced MR imaging-initial experience. Radiology. 2012;263:884–92.

    Article  PubMed  Google Scholar 

  46. Nakajima R, Abe K, Sakai S. Diagnostic ability of FDG-PET/CT in the detection of malignant pleural effusion. Medicine. 2015;94:e1010. https://doi.org/10.1097/MD.0000000000001010.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Porcel JM, Hernandez P, Martinez-Alonso M, et al. Accuracy of Fluorodeoxyglucose-PET imaging for differentiating benign from malignant pleural effusions. A meta-analysis. Chest. 2015;147:502–12.

    Article  PubMed  Google Scholar 

  48. Hooper C, Lee YC, Maskell N, et al. Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65(Suppl 2):ii4–ii17.

    Article  PubMed  Google Scholar 

  49. Van Zandwijk N, Clarke C, Henderson D, et al. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J Thorac Dis. 2013;5:e254–307.

    PubMed  PubMed Central  Google Scholar 

  50. Garcia LW, Ducatman BS, Wang HH. The value of multiple fluid specimens in the cytological diagnosis of malignancy. Mod Pathol. 1994;7:665–8.

    CAS  PubMed  Google Scholar 

  51. Porcel JM, Esquerda A, Vives M, et al. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracentesis. Arch Bronconeumol. 2014;50:161–5.

    Article  PubMed  Google Scholar 

  52. Arnold DT, De Fanseko D, Perry S, et al. Investigating unilateral pleural effusions: the role of cytology. Eur Respir J. 2018;52:1801254.

    Article  PubMed  Google Scholar 

  53. Shamblin CJ, Tanner NT, Sanchez RS, et al. EGFR mutations in malignant pleural effusions from lung cancer. Curr Respir Care Rep. 2013;2:79–87.

    Article  CAS  Google Scholar 

  54. Wang Z, Wu X, Han X, et al. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma. Chin J Cancer Res. 2016;28:606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prakash UB, Reiman HM. Comparison of needle biopsy with cytologic analysis for the evaluation of pleural effusion: analysis of 414 cases. Mayo Clin Proc. 1985;60:158–64.

    Article  CAS  PubMed  Google Scholar 

  56. Nance KV, Shermer RW, Askin FB. Diagnostic efficacy of pleural biopsy as compared with that of pleural fluid examination. Mod Pathol. 1991;4:320–4.

    CAS  PubMed  Google Scholar 

  57. Hallifax RJ, Corcoran JP, Ahmed A, et al. Physician-based ultrasound-guided for diagnosing pleural disease. Chest. 2014;146:1001–6.

    Article  PubMed  Google Scholar 

  58. Koegelenberg CF, Irusen EM, von Groote-Bidlingmaier F, et al. The utility of ultrasound-guided thoracentesis and pleural biopsy in undiagnosed pleural exudates. Thorax. 2015;70:995–7.

    Article  PubMed  Google Scholar 

  59. Metintaş M, Yıldırım H, Kaya T, et al. CT scan-guided Abrams’ needle pleural biopsy versus ultrasound-assisted cutting needle pleural biopsy for diagnosis in patients with pleural effusion: a randomized, controlled trial. Respiration. 2016;91:156–63.

    Article  PubMed  Google Scholar 

  60. Rahman NM, Ali NJ, Brown G, British Thoracic Society Pleural Disease Guideline Group. Local anaesthetic thoracoscopy: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65:54–60.

    Article  Google Scholar 

  61. Feller-Kopman D, Reddy CB, DeCamp MM, et al. Management of malignant pleural effusions. An official ATS/STS/STR clinical practice guideline. Am J Respir Crit Care Med. 2018;198:839–49.

    Article  PubMed  Google Scholar 

  62. Musani AI. Treatment options for malignant pleural effusion. Curr Opin Pulm Med. 2009;15:380–7.

    Article  PubMed  Google Scholar 

  63. Feller-Kopman D, Berkowitz D, Boiselle P, et al. Large-volume thoracentesis and the risk of reexpansion pulmonary edema. Ann Thorac Surg. 2007;84:1656–61.

    Article  PubMed  Google Scholar 

  64. Feller-Kopman D, Walkey A, Berkowitz D, et al. The relationship of pleural pressure to symptom development during therapeutic thoracentesis. Chest. 2006;129:1556–60.

    Article  PubMed  Google Scholar 

  65. Ost DE, Niu J, Zhao H, et al. Quality gaps and comparative effectiveness of management strategies for recurrent malignant pleural effusions. Chest. 2018;153:438–52.

    Article  PubMed  Google Scholar 

  66. Clive AO, Jones HE, Bhatnagar R, et al. Interventions for the management of malignant pleural effusions: a network meta-analysis. Cochrane Database Syst Rev. 2016;5:CD010529.

    Google Scholar 

  67. Shaw P, Agarwal R. Pleurodesis for malignant pleural effusions. Cochrane Database Syst Rev. 2004;1:CD002916.

    Google Scholar 

  68. Dresler CM, Olak J, Herndon JE 2nd, et al. Phase III intergroup study of talc poudrage vs talc slurry sclerosis for malignant pleural effusion. Chest. 2005;127:909–15.

    Article  PubMed  Google Scholar 

  69. Rahman NM, Pepperell J, Rehal S, et al. Effect of opioids vs NSAIDs and larger vs smaller chest tube size on pain control and pleurodesis efficacy among patients with malignant pleural effusion: the TIME1 randomized clinical trial. JAMA. 2015;314:2641–53.

    Article  CAS  PubMed  Google Scholar 

  70. Mager H-J, Maesen B, Verzijlbergen F, et al. Distribution of talc suspension during treatment of malignant pleural effusion with talc pleurodesis. Lung Cancer. 2002;36:77–81.

    Article  PubMed  Google Scholar 

  71. Dryzer SR, Allen ML, Strange C, et al. A comparison of rotation and nonrotation in tetracycline pleurodesis. Chest. 1993;104:1763–6.

    Article  CAS  PubMed  Google Scholar 

  72. Kennedy L, Sahn SA. Talc pleurodesis for the treatment of pneumothorax and pleural effusion. Chest. 1994;106:1215–22.

    Article  CAS  PubMed  Google Scholar 

  73. Musani AI, Haas AR, Seijo L, et al. Outpatient management of malignant pleural effusions with small-bore, tunneled pleural catheters. Respiration. 2004;71:559–66.

    Article  PubMed  Google Scholar 

  74. Warren WH, Kalimi R, Khodadadian LM, et al. Management of malignant pleural effusions using the Pleur(x) catheter. Ann Thorac Surg. 2008;85:1049–55.

    Article  PubMed  Google Scholar 

  75. Tremblay A, Michaud G. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion. Chest. 2006;129:362–8.

    Article  PubMed  Google Scholar 

  76. Wahidi MM, Reddy C, Yarmus L, et al. Randomized trial of pleural fluid drainage frequency in patients with malignant pleural effusions. The ASAP trial. Am J Respir Crit Care Med. 2017;195:1050–7.

    Article  PubMed  Google Scholar 

  77. Myers R, Michaud G. Tunneled pleural catheters: an update for 2013. Clin Chest Med. 2013;34:73–80.

    Article  PubMed  Google Scholar 

  78. Iyer NP, Reddy CB, Wahidi MM, et al. Indwelling pleural catheter versus pleurodesis for malignant pleural effusions: a systematic review and meta-analysis. Ann Am Thorac Soc. 2019;16:124–31.

    Article  PubMed  Google Scholar 

  79. Wilson LD, Detterbeck FC, Yahalom J. Clinical practice. Superior vena cava syndrome with malignant causes. N Engl J Med. 2007;356:1862–9.

    Article  CAS  PubMed  Google Scholar 

  80. Yellin A, Rosen A, Reichert N, et al. Superior vena cava syndrome: the myth – the facts. Am Rev Respir Dis. 1990;141:1114–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ostler PJ, Clarke DP, Watkinson AF, et al. Superior vena cava obstruction: a modern management strategy. Clin Oncol (R Coll Radiol). 1997;9:83–9.

    Article  CAS  PubMed  Google Scholar 

  82. Yu JB, Wilson LD, Detterbeck FC. Superior vena cava syndrome–a proposed classification system and algorithm for management. J Thorac Oncol. 2008;3:811–4.

    Article  PubMed  Google Scholar 

  83. Lepper PM, Ott SR, Hoppe H, et al. Superior vena cava syndrome in thoracic malignancies. Respir Care. 2011;56:653–66.

    Article  PubMed  Google Scholar 

  84. Chen JC, Bongard F, Klein SR. A contemporary perspective on superior vena cava syndrome. Am J Surg. 1990;160:207–11.

    Article  CAS  PubMed  Google Scholar 

  85. Rice TW, Rodriguez RM, Light RW. The superior vena cava syndrome: clinical characteristics and evolving etiology. Medicine (Baltimore). 2006;85:37–42.

    Article  PubMed  Google Scholar 

  86. Johnson LS, Kinnear DG, Brown RA, et al. ‘Downhill’ esophageal varices: a rare cause of upper gastrointestinal bleeding. Arch Surg. 1978;113:1463 1464.

    Article  PubMed  Google Scholar 

  87. Ahmann F. A reassessment of the clinical implications of the superior vena cava syndrome. J Clin Oncol. 1984;2:961–9.

    Article  CAS  PubMed  Google Scholar 

  88. Nesbitt JC. Surgical management of superior vena cava syndrome. In: Pass HI, Mitchell JB, Jhonson DH, Turrisi AT, editors. Lung cancer: principles and practice. Philadelphia: Lippincott Williams & Wilkins; 1996.

    Google Scholar 

  89. Parish JM, Marschke RF Jr, Dines DE, et al. Etiologic considerations in superior vena cava syndrome. Mayo Clin Proc. 1981;56:407–13.

    CAS  PubMed  Google Scholar 

  90. Uberoi R. Quality assurance guidelines for superior vena cava stenting in malignant disease. Cardiovasc Intervent Radiol. 2006;29:319–32.

    Article  PubMed  Google Scholar 

  91. Eren S, Karaman A, Okur A. The superior vena cava syndrome caused by malignant disease imaging with multi-detector row CT. Eur J Radiol. 2006;59:93–103.

    Article  PubMed  Google Scholar 

  92. Kim HJ, Kim HS, Chung SH. CT diagnosis of superior vena cava syndrome: the importance of collateral vessels. AJR. 1993;161:539–42.

    Article  CAS  PubMed  Google Scholar 

  93. Straka C, Ying J, Kong FM, et al. Review of evolving etiologies, implications and treatment strategies for the superior vena cava syndrome. Springerplus. 2016;5:229. https://doi.org/10.1186/s40064-016-1900-7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dosios T, Theakos N, Chatziantoniou. Cervical Mediastinoscopy and anterior Mediastinotomy in superior vena cava obstruction. Chest. 2005;128:1551–6.

    Article  PubMed  Google Scholar 

  95. Porte H, Metois D, Finzi L, et al. Superior vena cava syndrome of malignant origin. Which surgical procedure for which diagnosis? Eur J Cardiothorac Surg. 2000;17:384–8.

    Article  CAS  PubMed  Google Scholar 

  96. Mineo TC, Ambrogi V, Nofroni I, et al. Mediastinoscopy in superior vena cava obstruction: analysis of 80 consecutive patients. Ann Thorac Surg. 1999;68:223–6.

    Article  CAS  PubMed  Google Scholar 

  97. Wong MK, Tam TC, Lam DC, et al. EBUS-TBNA in patients presented with superior vena cava syndrome. Lung Cancer. 2012;77:277–80.

    Article  PubMed  Google Scholar 

  98. Markman M. Diagnosis and management of superior vena cava syndrome. Cleve Clin J Med. 1999;66:59–61.

    Article  CAS  PubMed  Google Scholar 

  99. Guijarro Escribano JF, Anton RF, Colmenarejo Rubio A, et al. Superior vena cava syndrome with central venous catheter for chemotherapy treated successfully with fibrinolysis. Clin Transl Oncol. 2007;9:198–200.

    Article  CAS  PubMed  Google Scholar 

  100. Yamagami T, Nakamura T, Kato T, et al. Hemodynamic changes after self-expandable metallic stent therapy for vena cava syndrome. AJR. 2002;178:635–9.

    Article  PubMed  Google Scholar 

  101. Rowell NP, Gleeson FV. Steroids, radiotherapy, chemotherapy and stents for superior vena caval obstruction in carcinoma of the bronchus; a systematic review. Clin Oncol (R Coll Radiol). 2012;14:338–51.

    Article  Google Scholar 

  102. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54. https://doi.org/10.1007/s11912-011-0203-y.

    Article  PubMed  Google Scholar 

  103. Tabouret E, Chinot O, Metellus P, et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32(11):4655–62.

    PubMed  Google Scholar 

  104. Barnholtz-Sloan JS, Sloan AE, Davis FG, et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol. 2004;22(14):2865–72. https://doi.org/10.1200/JCO.2004.12.149.

    Article  PubMed  Google Scholar 

  105. Hubbs JL, Boyd JA, Hollis D, et al. Factors associated with the development of brain metastases: analysis of 975 patients with early stage nonsmall cell lung cancer. Cancer. 2010;116(21):5038–46. https://doi.org/10.1002/cncr.25254.

    Article  PubMed  Google Scholar 

  106. Toyokawa G, Seto T, Takenoyama M, Ichinose Y. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary? Cancer Metastasis Rev. 2015;34(4):797–805. https://doi.org/10.1007/s10555-015-9592-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gainor JF, Tseng D, Yoda S, et al. Patterns of metastatic spread and mechanisms of resistance to Crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol, 2017, PO.17.00063. 2017; https://doi.org/10.1200/PO.17.00063.

  108. www.uptodate.com/contents/brain-metastases-in-non-small-cell-lung-cancer/abstract

  109. Patil T, Smith DE, Bunn PA, et al. The incidence of brain metastases in stage IV ROS1-rearranged non-small cell lung cancer and rate of central nervous system progression on Crizotinib. J Thorac Oncol. 2018;13(11):1717–26. https://doi.org/10.1016/j.jtho.2018.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Achrol AS, Rennert RC, Anders C, et al. Brain metastases. Nature reviews. Dis Primers. 2019;5(1):5. https://doi.org/10.1038/s41572-018-0055-y.

    Article  Google Scholar 

  111. Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neuro-Oncol. 1999;44(3):275–81. https://doi.org/10.1023/a:1006308808769.

    Article  CAS  Google Scholar 

  112. Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol. 1988;45(7):741–4. https://doi.org/10.1001/archneur.1988.00520310047016.

    Article  CAS  PubMed  Google Scholar 

  113. Chang SM, Messersmith H, Ahluwalia M, et al. Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: summary of SNO and ASCO endorsement of the Congress of Neurological Surgeons guidelines. Neuro-Oncology. 2019;21(4):424–7. https://doi.org/10.1093/neuonc/noz034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brown PD, Jaeckle K, Ballman KV, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial [published correction appears in JAMA. 2018 Aug 7;320(5):510]. JAMA. 2016;316(4):401–9. https://doi.org/10.1001/jama.2016.9839.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60. https://doi.org/10.1016/S1470-2045(17)30441-2.

    Article  PubMed  PubMed Central  Google Scholar 

  116. https://oncologypro.esmo.org/education-library/esmo-handbooks/oncological-emergencies

  117. Loblaw DA, Laperriere NJ. Emergency treatment of malignant extradural spinal cord compression: an evidence-based guideline. J Clin Oncol. 1998;16(4):1613–24. https://doi.org/10.1200/JCO.1998.16.4.1613.

    Article  CAS  PubMed  Google Scholar 

  118. Silva GT, Bergmann A, Thuler LC. Incidence, associated factors, and survival in metastatic spinal cord compression secondary to lung cancer. Spine J. 2015;15(6):1263–9. https://doi.org/10.1016/j.spinee.2015.02.015.

    Article  PubMed  Google Scholar 

  119. da Silva GT, Bergmann A, Santos Thuler LC. Prognostic factors in patients with metastatic spinal cord compression secondary to lung cancer: a systematic review of the literature. Eur Spine J. 2015;24(10):2107–13. https://doi.org/10.1007/s00586-015-4157-x.

    Article  PubMed  Google Scholar 

  120. Robson P. Metastatic spinal cord compression: a rare but important complication of cancer. Clin Med (Lond). 2014;14(5):542–5. https://doi.org/10.7861/clinmedicine.14-5-542.

    Article  PubMed  Google Scholar 

  121. Chen YJ, Chang GC, Chen HT, et al. Surgical results of metastatic spinal cord compression secondary to non-small cell lung cancer. Spine. 2007;32(15):E413–8. https://doi.org/10.1097/BRS.0b013e318074d6c7.

    Article  PubMed  Google Scholar 

  122. Wänman J, Grabowski P, Nyström H, et al. Metastatic spinal cord compression as the first sign of malignancy. Acta Orthop. 2017;88(4):457–62. https://doi.org/10.1080/17453674.2017.1319179.

    Article  PubMed  PubMed Central  Google Scholar 

  123. National Collaborating Centre for Cancer (UK). Metastatic spinal cord compression: diagnosis and Management of Patients at risk of or with metastatic spinal cord compression. Cardiff: National Collaborating Centre for Cancer (UK); 2008.

    Google Scholar 

  124. Ribas ES, Schiff D. Spinal cord compression. Curr Treat Options Neurol. 2012;14(4):391–401. https://doi.org/10.1007/s11940-012-0176-7.

    Article  PubMed  Google Scholar 

  125. Kumar A, Weber MH, Gokaslan Z, et al. Metastatic spinal cord compression and steroid treatment: a systematic review. Clin Spine Surg. 2017;30(4):156–63. https://doi.org/10.1097/BSD.000000000000052.

    Article  PubMed  Google Scholar 

  126. Lindner G, Felber R, Schwarz C, et al. Hypercalcemia in the ED: prevalence, etiology, and outcome. Am J Emerg Med. 2013;31(4):657–60. https://doi.org/10.1016/j.ajem.2012.11.010.

    Article  PubMed  Google Scholar 

  127. Stewart AF. Clinical practice. Hypercalcemia associated with cancer. N Engl J Med. 2005;352(4):373–9. https://doi.org/10.1056/NEJMcp042806.

    Article  CAS  PubMed  Google Scholar 

  128. Yeung S-CJ, Wenli L. Metabolic and endocrine oncologic emergencies. In: Manzullo EF, editor. Oncologic emergencies. Houston: MD Anderson Cancer Series; 2016. p. 21–54.

    Chapter  Google Scholar 

  129. Crowley R, Gittoes N. How to approach hypercalcaemia. Clin Med (Lond). 2013;13(3):287–90. https://doi.org/10.7861/clinmedicine.13-3-287.

    Article  PubMed  Google Scholar 

  130. Jameson JL, Johnson BE. Paraneoplastic syndromes: endocrinologic/hematologic. In: Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J, editors. Harrison’s principles of internal medicine. 17th ed. Sudbury: McGraw Hill; 2008. p. 808–24.

    Google Scholar 

  131. Hussain A, Adnan A, El-Hasani S. Small cell carcinoma of the lung presented as acute pancreatitis. Case report and review of the literature. JOP J Pancreas. 2012;13(6):702–4. https://doi.org/10.6092/1590-8577/1181.

    Article  Google Scholar 

  132. Mazzone PJ, Arroliga AC. Endocrine paraneoplastic syndromes in lung cancer. Curr Opin Pulm Med. 2003;9(4):313–20. https://doi.org/10.1097/00063198-200307000-00012.

    Article  PubMed  Google Scholar 

  133. Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc. 2010;85(9):838–54. https://doi.org/10.4065/mcp.2010.0099.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Spiro SG, Gould MK, Colice GL. American College of Chest Physicians. Initial evaluation of the patient with lung cancer: symptoms, signs, laboratory tests, and paraneoplastic syndromes: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):149S–60S. https://doi.org/10.1378/chest.07-1358. PMID: 17873166

    Article  PubMed  Google Scholar 

  135. Ricciardi S, de Marinis F. Treatment of bone metastases in lung cancer: the actual role of zoledronic acid. Rev Recent Clin Trials. 2009;4(3):205–11. https://doi.org/10.2174/157488709789957718.

    Article  CAS  PubMed  Google Scholar 

  136. Freifeld AG, Bow EJ, Sepkowitz KA, Infectious Diseases Society of America, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93. https://doi.org/10.1093/cid/cir073.

    Article  PubMed  Google Scholar 

  137. Taplitz RA, Kennedy EB, Bow EJ, et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J Clin Oncol. 2018;36(30):3043–54. https://doi.org/10.1200/JCO.18.00374.

    Article  PubMed  Google Scholar 

  138. Innes H, Lim SL, Hall A, et al. Management of febrile neutropenia in solid tumoursandlymphomasusingtheMultinationalAssociationforSupportiveCare in cancer (MASCC) risk index: feasibility and safety in routine clinical practice. Support Care Cancer. 2008;16(5):485–91. https://doi.org/10.1007/s00520-007-0334-8.

    Article  PubMed  Google Scholar 

  139. Heussel CP, Kauczor HU, Heussel G, et al. Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT.AJR. Am J Roentgenol. 1997;169(5):1347–53. https://doi.org/10.2214/ajr.169.5.9353456.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Serifoglu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serifoglu, I., Sen, N. (2023). Lung Cancer Emergencies. In: Cingi, C., Yorgancıoğlu, A., Bayar Muluk, N., Cruz, A.A. (eds) Airway diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-22483-6_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22483-6_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22482-9

  • Online ISBN: 978-3-031-22483-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics