Skip to main content

Mechanisms of Airway Allergies

  • Chapter
  • First Online:
Airway diseases

Abstract

Both allergic rhinitis (AR) and allergic asthma are disorders involving chronic atopic inflammation which affects the airway. The mechanism causing AR is the attachment of an allergenic epitope to specific IgE in an individual who has undergone sensitization. This then manifests symptomatically as a nasal discharge, blocked nose, pruritus, sternutation, and tiredness [1]. There are associations between AR and several other conditions, both atopic and nonatopic, notably asthma, allergic conjunctivitis, allergic eczema, and chronic rhinosinusitis (CRS). The features of asthma are a chronic inflammatory state, excessive production of mucus, edema, airway obstruction of varying severity, and weariness. Asthma does not consist of just one syndrome, and there are several phenotypic presentations, both pediatric and adult, with the most frequently noted phenotypes being the allergic and nonallergic types of asthma [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hansel FK. Clinical and histopathologic studies of the nose and sinuses in allergy. J Allergy. 1929;1(1):43–70. https://doi.org/10.1016/S0021-8707(29)90083-6.

    Article  Google Scholar 

  2. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24. https://doi.org/10.1164/rccm.200711-1754OC.

    Article  PubMed  Google Scholar 

  3. Keller T, Hohmann C, Standl M, Wijga AH, Gehring U, Melen E, et al. The sex-shift in single disease and multimorbid asthma and rhinitis during puberty – a study by MeDALL. Allergy. 2018;73(3):602–14. https://doi.org/10.1111/all.13312.

    Article  CAS  PubMed  Google Scholar 

  4. Wikstén J, Toppila-Salmi S, Mäkelä M. Primary prevention of airway allergy. Curr Treat Options Allergy. 2018;5(4):347–55. https://doi.org/10.1007/s40521-018-0190-4. Epub 2018 Nov 5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paramesh H. Air pollution and allergic airway diseases: social determinantsand sustainability in the control and prevention. Indian J Pediatr. 2018;85(4):284–94. https://doi.org/10.1007/s12098-017-2538-3.

    Article  CAS  PubMed  Google Scholar 

  6. King K, Martynenko M, Bergman MH, Liu YH, Winickoff JP, Weitzman M. Family composition and children’s exposure to adult smokers in their homes. Pediatrics. 2009;123(4):e559–64.

    Article  PubMed  Google Scholar 

  7. Skloot GS. Asthma phenotypes and endotypes: a personalized approach to treatment. Curr Opin Pulm Med. 2016;22(1):3–9. https://doi.org/10.1097/MCP.0000000000000225.

    Article  CAS  PubMed  Google Scholar 

  8. Hylkema MN, Blacquiere MJ. Intrauterine effects of maternal smoking on sensitization, asthma, and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(8):660–2. https://doi.org/10.1513/pats.200907-065DP.

    Article  CAS  PubMed  Google Scholar 

  9. Zacharasiewicz A. Maternal smoking in pregnancy and its influence on childhood asthma. ERJ Open Res. 2016;2:3. https://doi.org/10.1183/23120541.00042-2016.

    Article  Google Scholar 

  10. Kalliola S, Pelkonen AS, Malmberg LP, Sarna S, Hamalainen M, Mononen I, et al. Maternal smoking affects lung function and airway inflammation in young children with multiple-trigger wheeze. J Allergy Clin Immunol. 2013;131(3):730–5. https://doi.org/10.1016/j.jaci.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  11. Lodge CJ, Braback L, Lowe AJ, Dharmage SC, Olsson D, Forsberg B. Grandmaternal smoking increases asthma risk in grandchildren: a nationwide Swedish cohort. Clin Exp Allergy. 2018;48(2):167–74. https://doi.org/10.1111/cea.13031.

    Article  CAS  PubMed  Google Scholar 

  12. Saulyte J, Regueira C, Montes-Martinez A, Khudyakov P, Takkouche B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med. 2014;11(3):e1001611. https://doi.org/10.1371/journal.pmed.1001611.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee-Sarwar KA, Bacharier LB, Litonjua AA. Strategies to alter the natural history of childhood asthma. Curr Opin Allergy Clin Immunol. 2017;17(2):139–45. https://doi.org/10.1097/ACI.0000000000000340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andiappan AK, Puan KJ, Lee B, Nardin A, Poidinger M, Connolly J, et al. Allergic airway diseases in a tropical urban environment are driven by dominant mono-specific sensitization against house dust mites. Allergy. 2014;69(4):501–9.

    Article  CAS  PubMed  Google Scholar 

  15. Nurmatov U, van Schayck CP, Hurwitz B, Sheikh A. House dust mite avoidance measures for perennial allergic rhinitis: an updated Cochrane systematic review. Allergy. 2012;67(2):158–65.

    Article  CAS  PubMed  Google Scholar 

  16. Sheikh A, Hurwitz B, Nurmatov U, van Schayck CP. House dust mite avoidance measures for perennial allergic rhinitis. Cochrane Database Syst Rev. 2010;7(7):CD001563.

    Google Scholar 

  17. Platts-Mills TAE. The role of allergens in allergic airway disease. J Allergy Clin Immunol. 1998;101:S364–6.

    Article  CAS  PubMed  Google Scholar 

  18. Platts-Mills TAE, Vervloet D, Thomas WR, Aalberse RC, Chapman MD. Indoor allergens and asthma. Third workshop, Cuenca, Spain. J Allergy Clin Immunol. 1997;100:S1–S24.

    Google Scholar 

  19. Wickman M, Nordvall SL, Pershagen G, Korsgaard J, Johansen N. Sensitization to domestic mites in a cold temperate region. Am Rev Respir Dis. 1993;148:58–62.

    Article  CAS  PubMed  Google Scholar 

  20. Ronmark E, Perzanowski MS, Lundback B, TAE P-M. Asthma among children in a dry climate (abstract). J Allergy Clin Immunol. 1998;101:Part 2.

    Google Scholar 

  21. Hajat S, Haines A, Atkinson RW, Bremner SA, Anderson HR, Emberlin J. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom. Am J Epidemiol. 2001;153(7):704–14.

    Article  CAS  PubMed  Google Scholar 

  22. Hwang BF, Jaakkola JJ, Lee YL, Lin YC, Guo YL. Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren. Respir Res. 2006;7:23. https://doi.org/10.1186/1465-9921-7-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng Q, Lu C, Li Y, Sundell J, Dan N. Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environ Res. 2016;150:119–27.

    Article  CAS  PubMed  Google Scholar 

  24. Upperman CR, Parker JD, Akinbami LJ, Jiang C, He X, Murtugudde R, et al. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of US adults: 1997–2013. J Allergy Clin Immunol Pract. 2017;5(2):435–441.e2.

    Article  PubMed  Google Scholar 

  25. Yepes-Nunez JJ, Brozek JL, Fiocchi A, Pawankar R, Cuello-Garcia C, Zhang Y, et al. Vitamin D supplementation in primary allergy prevention: systematic review of randomized and non-randomized studies. Allergy. 2018;73(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  26. Bunyavanich S, Rifas-Shiman SL, Platts-Mills TA, Workman L, Sordillo JE, Camargo CA Jr, et al. Prenatal, perinatal, and childhood vitamin D exposure and their association with childhood allergic rhinitis and allergic sensitization. J Allergy Clin Immunol. 2016;137(4):1063–1070.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei Y, Yang H, Zhen L. Obesity is a risk factor for allergic rhinitis in children of Wuhan (China). Asia Pac Allergy. 2016;6(2):101–4.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Beasley R, Roche WR, Roberts JA, et al. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989;139:806–17.

    Article  CAS  PubMed  Google Scholar 

  29. Djukanovic R, Feather I, Gratziou C, et al. Effect of natural allergen exposure during the grass pollen season on airways inflammatory cells and asthma symptoms. Thorax. 1996;51:575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jarjour NN, Calhoun WJ, Kelly EA, et al. The immediate and late allergic response to segmental bronchopulmonary provocation in asthma. Am J Respir Crit Care Med. 1997;155:1515–21.

    Article  CAS  PubMed  Google Scholar 

  31. Gauvreau GM, Watson RM, O’Byrne PM. Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am J Respir Crit Care Med. 1999;160:640–7.

    Article  CAS  PubMed  Google Scholar 

  32. Gauvreau GM, Lee JM, Watson RM, et al. Increased numbers of both airway basophils and mast cells in sputum after allergen inhalation challenge of atopic asthmatics. Am J Respir Crit Care Med. 2000;161:1473–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gauvreau GM, El-Gammal AI, O'Byrne PM. Allergen-induced airway responses. Eur Respir J 2015 Sep;46(3):819–831.

    Article  CAS  PubMed  Google Scholar 

  34. Gauvreau GM, Inman MD, Kelly M, et al. Increased levels of airway neutrophils reduce the inhibitory effects of inhaled glucocorticosteroids on allergen-induced airway eosinophils. Can Respir J. 2002;9:26–32.

    Article  PubMed  Google Scholar 

  35. Plaut M, Pierce JH, Watson CJ, et al. Mast cell lines produce lymphokines in response to cross-linkage of FcεRI or to calcium ionophores. Nature. 1989;339:64–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gauvreau GM, Parameswaran KN, Watson RM, et al. Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med. 2001;164:1495–500.

    Article  CAS  PubMed  Google Scholar 

  37. Leigh R, Vethanayagam D, Yoshida M, et al. Effects of montelukast and budesonide on airway responses and airway inflammation in asthma. Am J Respir Crit Care Med. 2002;166:1212–7.

    Article  PubMed  Google Scholar 

  38. Parameswaran K, Watson R, Gauvreau GM, et al. The effect of pranlukast on allergen-induced bone marrow eosinophilopoiesis in subjects with asthma. Am J Respir Crit Care Med. 2004;169:915–20.

    Article  PubMed  Google Scholar 

  39. Imaoka H, Gauvreau GM, Watson RM, et al. Sputum inflammatory cells and allergen-induced airway responses in allergic asthmatic subjects. Allergy. 2011;66:1075–80.

    Article  CAS  PubMed  Google Scholar 

  40. Gauvreau GM, Ronnen GM, Watson RM, et al. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med. 2000;162:1302–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lambrecht BN. The dendritic cell in allergic airway diseases: a new player to the game. Clin Exp Allergy. 2001;31:206–18.

    Article  CAS  PubMed  Google Scholar 

  42. Upham JW, Stumbles PA. Why are dendritic cells important in allergic diseases of the respiratory tract? Pharmacol Ther. 2003;100:75–87.

    Article  CAS  PubMed  Google Scholar 

  43. Lambrecht BN, De VM, Coyle AJ, et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest. 2000;106:551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambrecht BN, Salomon B, Klatzmann D, et al. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J Immunol. 1998;160:4090–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res. 2011;12:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wood LJ, Inman MD, Watson RM, et al. Changes in bone marrow inflammatory cell progenitors after inhaled allergen in asthmatic subjects. Am J Respir Crit Care Med. 1998;157:99–105.

    Article  CAS  PubMed  Google Scholar 

  47. Sehmi R, Wood LJ, Watson R, et al. Allergen-induced increases in IL-5 receptor α-subunit expression on bone marrow–derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J Clin Invest. 1997;100:2466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akdis M, Trautmann A, Klunker SI, et al. T helper (Th) 2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells. FASEB J. 2003;17:1026–35.

    Article  CAS  PubMed  Google Scholar 

  49. Akkoc T, de Koning PJ, Ruckert B, et al. Increased activation-induced cell death of high IFN-gamma producing T(H)1 cells as a mechanism of T(H)2 predominance in atopic diseases. J Allergy Clin Immunol. 2008;121:652–658.e651.

    Article  CAS  PubMed  Google Scholar 

  50. Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J Allergy Clin Immunol. 2009;123:1004–11.

    Article  CAS  PubMed  Google Scholar 

  51. Agrawal DK, Shao Z. Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep. 2010;10(1):39–48. https://doi.org/10.1007/s11882-009-0081-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9:1341–6.

    Article  CAS  PubMed  Google Scholar 

  53. Feili-Hariri M, Falkner DH, Morel PA. Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol. 2005;78:656–64.

    Article  CAS  PubMed  Google Scholar 

  54. Gordon JR, Li F, Nayyar A, et al. CD8 alpha+, but not CD8 alpha−, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. J Immunol. 2005;175:1516–22.

    Article  CAS  PubMed  Google Scholar 

  55. Shao Z, Bharadwaj AS, McGee HS, et al. Fms-like tyrosine kinase 3 ligand increases a lung DC subset with regulatory properties in allergic airway inflammation. J Allergy Clin Immunol. 2009;123:917–924.e912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lighvani AA, Frucht DM, Jankovic D, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A. 2001;98:15137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Djuretic IM, Levanon D, Negreanu V, et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol. 2007;8:145–53.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu J, Guo L, Watson CJ, et al. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol. 2001;166:7276–81.

    Article  CAS  PubMed  Google Scholar 

  59. Scheinman EJ, Avni O. Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J Biol Chem. 2009;284:3037–48.

    Article  CAS  PubMed  Google Scholar 

  60. Tamachi T, Takatori H, Fujiwara M, et al. STAT6 inhibits T-bet-independent Th1 cell differentiation. Biochem Biophys Res Commun. 2009;382:751–5.

    Article  CAS  PubMed  Google Scholar 

  61. Josefowicz SZ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity. 2009;30:616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burchill MA, Yang J, Vogtenhuber C, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178:280–90.

    Article  CAS  PubMed  Google Scholar 

  63. Shevach EM, Tran DQ, Davidson TS, Andersson J. The critical contribution of TGF-beta to the induction of Foxp3 expression and regulatory T cell function. Eur J Immunol. 2008:38, 915–917.

    Google Scholar 

  64. Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol. 2006;176:3321–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kearley J, Robinson DS, Lloyd CM. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol. 2008;122:617–624.e616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stock P, Kallinich T, Akbari O, et al. CD8(+) T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation. Eur J Immunol. 2004;34:1817–27.

    Article  CAS  PubMed  Google Scholar 

  67. Wells JW, Cowled CJ, Giorgini A, et al. Regulation of allergic airway inflammation by class I restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol. 2007;119:226–34.

    Article  CAS  PubMed  Google Scholar 

  68. Takeda K, Dow SW, Miyahara N, et al. Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. J Immunol. 2009;183:181–90.

    Article  CAS  PubMed  Google Scholar 

  69. Isogai S, Athiviraham A, Fraser RS, et al. Interferon-gamma-dependent inhibition of late allergic airway responses and eosinophilia by CD8+ gammadelta T cells. Immunology. 2007;122:230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koya T, Matsuda H, Matsubara S, et al. Differential effects of dendritic cell transfer on airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol. 2009;41:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adelroth E, Morris MM, Hargreave FE, et al. Airway responsiveness to leukotrienes C4 and D4 and to methacholine in patients with asthma and normal controls. N Engl J Med. 1986;315:480–4.

    Article  CAS  PubMed  Google Scholar 

  72. Manning PJ, Rokach J, Malo JL, et al. Urinary leukotriene E4 levels during early and late asthmatic responses. J Allergy Clin Immunol. 1990;86:211–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turan, H., Afşin, D.E., Yorgancıoğlu, A. (2023). Mechanisms of Airway Allergies. In: Cingi, C., Yorgancıoğlu, A., Bayar Muluk, N., Cruz, A.A. (eds) Airway diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-22483-6_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22483-6_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22482-9

  • Online ISBN: 978-3-031-22483-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics