Skip to main content

Obstructive Sleep Apnea Syndrome

A Pulmonology Perspective

  • Chapter
  • First Online:
Airway diseases

Abstract

Among respiratory disorders which are related to sleeping, obstructive sleep apnea has the highest prevalence. It results in repeated cessation, followed by recommencement, of breathing during sleep. The International Classification of Sleep Disorders, Third Edition (ICSD-III), promulgated by the American Academy of Sleep Medicine (AASM), defines six categories of sleep disorder. One such category consists of “sleep-related breathing disorders” (SRBDs), which share a common feature that they affect breathing in patients who are asleep. This category is then divided into a further three sub-categories, namely, obstructive sleep apnea (OSA), central sleep apnea, sleep-related hypoventilation, and sleep-related hypoxemic disorders [1]. While ICSD-III uses the term “OSA disorders,” the synonymous term OSAS (obstructive sleep apnea syndrome) is frequently also employed to describe the condition. In OSAS, the upper airway may be completely obstructed or partially obstructed multiple times during sleep, resulting in apnea or hypopnea, respectively. The restricted airflow frequently leads to low levels of oxygen saturation, which causes the patient to be aroused from sleep. This frequent waking at night then generally results in the patient becoming excessively sleepy during the day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  2. Slowik JM, Collen JF. Obstructive sleep apnea. 2021 Jul 26. In: Stat Pearls [Internet]. Treasure Island: StatPearls Publishing; 2021 Jan–.

    Google Scholar 

  3. Mernon J, Manganaro SN. Obstructive sleep-disordered breathing. 2021 Aug 14. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021 Jan–.

    Google Scholar 

  4. Young T, Palto M, Denysly J, et al. The occurrence of sleep disordered breathing among middle-aged adults. N Engl J Med. 1993;32:1230–5.

    Article  Google Scholar 

  5. Garvey JF, Pengo MF, Drakatos P, Kent BD. Epidemiological aspects of obstructive sleep apnea. J Thorac Dis. 2015;7(5):920–9.

    PubMed  PubMed Central  Google Scholar 

  6. Cumpston E, Chen P. Sleep apnea syndrome. 2021 Mar 10. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021 Jan–.

    Google Scholar 

  7. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    Article  CAS  PubMed  Google Scholar 

  9. Hoddes E, Dement we, and Zarcone V. The history and use of the Stanford sleepiness scale. (abstract). Psychophysiology. 1972;9:150.

    Google Scholar 

  10. Netzer NC, Stoohs RA, Netzer CM, et al. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485–91.

    Article  CAS  PubMed  Google Scholar 

  11. Chung F, Abdullah HR, Liao P. STOP-BANG questionnaire: a practical approach to screen for obstructive sleep apnea. Chest. 2016;149(3):631–8.

    Article  PubMed  Google Scholar 

  12. Neves Junior JAS, Fernandes APA, Tardelli MA, et al. Cutoff points in STOP-Bang questionnaire for obstructive sleep apnea. Neuropsiquiatr. 2020;78(9):561–56.

    Article  Google Scholar 

  13. Friedman M, Salapatas AM, Bonzelaar LB. Updated Friedman staging system for obstructive sleep apnea. Adv Otorhinolaryngol. 2017;80:41–8.

    PubMed  Google Scholar 

  14. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Darien, IL: American Academy of Sleep Medicine; 2020. Version 2.6.

    Google Scholar 

  15. Dey D, Chaudhuri S, Munshi S. Obstructive sleep apnea detection using concolutional neural network based deep learning framework. Biomed Eng Lett. 2018;8(1):95–100.

    Article  PubMed  Google Scholar 

  16. Epstein LJ, Kristo D, Strollo PJ Jr, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5:263–76.

    Article  PubMed  Google Scholar 

  17. Freedman N. Treatment of obstructive sleep apnea choosing the best positive airway pressure device. Sleep Med Clin. 2020;15:205–18.

    Article  PubMed  Google Scholar 

  18. Sullivan C, Issa F, Berthon-Jones M, et al. Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares. Lancet. 1981;1:862–5.

    Article  CAS  PubMed  Google Scholar 

  19. Loube DI, Gay PC, Strohl KP, et al. Indications for positive airway pressure treatment of adult obstructive sleep apnea patients: a consensus statement. Chest. 1999;115(3):863–6.

    Article  CAS  PubMed  Google Scholar 

  20. Roux F, Hilbert J. Continuous positive airway pressure: new generations. In: Lee-Chiong T, Mohsenin V, editors. Clinics in chest medicine, vol. 24. Philadelphia: W.B. Saunders Company; 2003. p. 315–42.

    Google Scholar 

  21. Randerath WJ, Parys K, Feldmeyer F, et al. Self-adjusting nasal continuous positive airway pressure therapy based on measurement of impedance: a comparison of two different maximum pressure levels. Chest. 1999;116(4):991–9.

    Article  CAS  PubMed  Google Scholar 

  22. Randerath WJ, Schraeder O, Galetke W, et al. Autoadjusting CPAP therapy based on impedance efficacy, compliance and acceptance. Am J Respir Crit Care Med. 2001;163(3):652–7.

    Article  CAS  PubMed  Google Scholar 

  23. Randerath W, Galetke W, David M, et al. Prospective randomized comparison of impedance controlled auto-continuous positive airway pressure (APAP(FOT)) with constant CPAP. Sleep Med. 2001;2:115–24.

    Article  PubMed  Google Scholar 

  24. Penzel T, Möller M, Becker HF, Knaack L, Peter JH. Effect of sleep position and sleep stage on the collapsibility of the upper airways in patients with sleep apnea. Sleep. 2001;24(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  25. Noseda A, Kempenaers C, Kerkhofs M, Braun S, Linkowski P, Jann E. Constant vs auto-continuous positive airway pressure in patients with sleep apnea hypopnea syndrome and a high variability in pressure requirement. Chest. 2004;126(1):31–7.

    Article  PubMed  Google Scholar 

  26. Sériès F, Marc I. Importance of sleep stage- and body position-dependence of sleep apnoea in determining benefits to auto-CPAP therapy. Eur Respir J. 2001 Jul;18(1):170–5.

    Article  PubMed  Google Scholar 

  27. Cartwright RD. Efect of sleep position on sleep apnea severity. Sleep. 1984;7(2):110–4.

    Article  CAS  PubMed  Google Scholar 

  28. Haba-Rubio J, Janssens JP, Rochat T, et al. Rapid eye movement related disordered breathing: clinical and polysomnographic features. Chest. 2005;128:3350–7.

    Article  PubMed  Google Scholar 

  29. Sanders MH, Kern N. Obstructive sleep apnea treated by independently adjusted inspiratory and expiratory positive airway pressures via nasal mask: physiologic and clinical implications. Chest. 1990;90(2):317–24.

    Article  Google Scholar 

  30. Gilmartin GS, Daly RW, Thomas RJ. Recognition and management of complex sleep-disordered breathing. Curr Opin Pulm Med. 2005;11(6):485–93.

    Article  PubMed  Google Scholar 

  31. Morgenthaler TI, Kuzniar TJ, Wolfe LF, et al. The complex sleep apnea resolution study: a prospective randomized controlled trial of continuous positive airway pressure versus adaptive servoventilation therapy. Sleep. 2014;37(5):927.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dellweg D, Kerl J, Hoehn E, et al. Randomized controlled trial of noninvasive positive pressure ventilation (NPPV) versus servo ventilation in patients with CPAP-induced central sleep apnea (complex sleep apnea). Sleep. 2013;36(8):1163.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kuźniar TJ, Morgenthaler TI. Treatment of complex sleep apnea syndrome. Chest. 2012;142(4):1049–57.

    Article  PubMed  Google Scholar 

  34. Masa JF, Corral J, Alonso ML, Ordax E, et al. Efficacy of different treatment alternatives for obesity hypoventilation syndrome. Pickwick study. Am J Respir Crit Care Med. 2015;192(1):86.

    Article  PubMed  Google Scholar 

  35. Mokhlesi B. Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care. 2010;55(10):1347.

    PubMed  Google Scholar 

  36. Olson AL, Zwillich C. The obesity hypoventilation syndrome. Am J Med. 2005;118(9):948.

    Article  PubMed  Google Scholar 

  37. Mokhlesi B, Masa JF, Brozek JL, et al. Evaluation and management of obesity hypoventilation syndrome. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2019;200(3) s

    Google Scholar 

  38. Berry RB, Chediak A, Brown LK, et al. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes. NPPV titration task force of the American Academy of sleep medicine. J Clin Sleep Med. 2010;6(5):491.

    Article  PubMed  Google Scholar 

  39. Sanders MH, Newman AB, Haggerty CL, et al. Sleep and sleep-disordered breathing in adults with predominantly mild obstructive airway disease. Am J Respir Crit Care Med. 2003;167(1):7.

    Article  PubMed  Google Scholar 

  40. Lewis CA, Fergusson W, Eaton T, et al. Isolated nocturnal desaturation in COPD: prevalence and impact on quality of life and sleep. Thorax. 2009;64(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  41. Budhiraja R, Siddiqi TA, Quan SF. Sleep disorders in chronic obstructive pulmonary disease: etiology, impact, and management. J Clin Sleep Med. 2015;11(3):259. Epub 2015 Mar 15

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flenley DC. Sleep in chronic obstructive lung disease. Clin Chest Med. 1985;6(4):651.

    Article  CAS  PubMed  Google Scholar 

  43. Celli BR, MacNee W, ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932.

    Article  CAS  PubMed  Google Scholar 

  44. Dunn WF, Nelson SB, Hubmayr RD. Oxygen-induced hypercarbia in obstructive pulmonary disease. Am Rev Respir Dis. 1991;144(3):526.

    Article  CAS  PubMed  Google Scholar 

  45. Kushida CA, Littner MR, Hirshkowitz M, et al. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. American Academy of Sleep Medicine Sleep. 2006;29(3):375.

    PubMed  Google Scholar 

  46. Crimi C, Noto A, Princi P, et al. Domiciliary non-invasive ventilation in COPD: an international survey of indications and practices. COPD. 2016;13(4):483.

    Article  PubMed  Google Scholar 

  47. Zinchuk AV, Gentry MJ, Concato J. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep Med Rev. 2017;35:113–23.

    Article  PubMed  Google Scholar 

  48. Sutherland K, Kairaitis K, Yee BJ, et al. From CPAP to tailored therapy for OSAS. Multidisciplinary Res Med. 2018;13:44.

    Article  Google Scholar 

  49. Carberry JC, Amotoury J, Eckert DJ. Personalized management approach of OSAS. Chest. 2018;153(3):744–55.

    Article  PubMed  Google Scholar 

  50. Eckert DJ, White DP, Jordan AS, et al. Defining phenotyping causes of obstructive sleep apnea. Am J Respir Crit Care Med. 2013;188(8):996–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bosi M, De Vito A, Kotecha B, et al. Phenotyping the pathophysiology of obstructive sleep apnea using polygraph/polysomnography: a review of the literature. Sleep and Breathing. 2018;22:579–92.

    Article  PubMed  Google Scholar 

  52. Eckert D. Pheotypic approaches to obstructive sleep apnea: new pathways for targeted therapy. Sleep Med Rev. 2018;37:45–59.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Çiftçi, B., Çiftçi, T.U. (2023). Obstructive Sleep Apnea Syndrome. In: Cingi, C., Yorgancıoğlu, A., Bayar Muluk, N., Cruz, A.A. (eds) Airway diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-22483-6_129-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22483-6_129-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22482-9

  • Online ISBN: 978-3-031-22483-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics