Skip to main content

Circadian Rhythmicity in Aging and Parkinson’s Disease

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Abstract

Advancing age is allied to neuromorphological and neurochemical changes in several brain regions, which manifests as generalized reduction in the performance of aged individuals. Besides, some regions like the basal ganglia (BG), cortex, hippocampus, etc., are predisposed to degeneration, due to exaggerated functional deterioration with age. The gradual increase in elderly populace worldwide fosters the need to scrutinize age-associated protective factors. It is further prudent to examine links between normal aging and neurodegenerative alterations in specific brain regions, for example, substantia nigra pars compacta (SNpc) and Parkinson’s disease (PD). Dysfunction of biological clocks precede neurodegenerative disease states. Reduction in telomere length in aged individuals who experience delayed sleep phase syndrome signals deterioration of cellular health. In PD, the rapid eye movement behavioral disorder precedes the onset of motor symptoms by years, often by decades. Yoga, exercise, and social enrichment show positive dispositions during aging and in PD. It is, therefore, imperative to study the mechanisms employed by these lifestyle strategies. More importantly, the mechanisms and consequences need to be studied during middle age, which is a stage of complex neurobiological changes in the BG. The present chapter reviews early and contemporary studies on normal age effects in BG as well as the most common disorder of this region, PD.

H. J. Jyothi and Bidisha Bhaduri—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159(1):236–245. S0306452208017211. https://doi.org/10.1016/j.neuroscience.2008.11.051

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Google Scholar 

  • Alladi PA, Mahadevan A, Shankar SK, Raju TR, Muthane U (2010a) Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40, 43–52.

    Google Scholar 

  • Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR (2010b) Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Internat 57, 530–539

    Google Scholar 

  • Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255(5):18–32

    Google Scholar 

  • Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians

    Google Scholar 

  • Annapureddy J, Ray S, Kamble N, Kumar G, Pal PK, Dv S, Jain S, Kutty B, Yadav R (2021) The association of saccadic abnormalities with rem sleep in patients with Huntington’s disease. Sleep Med

    Google Scholar 

  • Arnulf I, Nielsen J, Lohmann E, Schieffer J, Wild E, Jennum P, Konofal E, Walker M, Oudiette D, Tabrizi S, Durr A (2008) Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol 65:482–488

    Google Scholar 

  • Asahina M, Kikkawa Y, Suzuki A, Hattori T (2003) Cutaneous sympathetic function in patients with multiple system atrophy. Clin Auton Res 13:91–95

    Google Scholar 

  • Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, Hibbert S, Budnik N, Zampedri L, Dickson J, Li Y, Aviles-Olmos I, Warner TT, Limousin P, Lees AJ, Greig NH, Tebbs S, Foltynie T (2017) Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390:1664–1675

    Google Scholar 

  • Badarny S, Aharon-Peretz J, Susel Z, Habib G, Baram Y (2014) Virtual reality feedback cues for improvement of gait in patients with Parkinson’s disease. Tremor Hyperkinetic Mov 4:225

    Google Scholar 

  • Bédard C, Wallman M-J, Pourcher E, Gould PV, Parent A, Parent M (2011) Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism Relat Disord 17:593–598

    Google Scholar 

  • Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Google Scholar 

  • Braak H, Rüb U, Gai WP, Del Tredici K (2003b) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110(5):517–536

    Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(Pt 7):1173–1197

    Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    Google Scholar 

  • Caldwell CC, Petzinger GM, Jakowec MW, Cadenas E (2020) Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington’s disease. Chem Biol Interact 315:108907

    Google Scholar 

  • Campêlo CLC, Santos JR, Silva AF, Dierschnabel AL, Pontes A, Cavalcante JS, Ribeiro AM, Silva RH (2017) Exposure to an enriched environment facilitates motor recovery and prevents short-term memory impairment and reduction of striatal BDNF in a progressive pharmacological model of parkinsonism in mice. Behav Brain Res 328:138–148

    Google Scholar 

  • Carlson O, Martin B, Stote KS, Golden E, Maudsley S, Najjar SS, Ferrucci L, Ingram DK, Longo DL, Rumpler WV, Baer DJ, Egan J, Mattson MP (2007) Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56:1729–1734

    Google Scholar 

  • Carpenter MB, Whittier JR, Mettler FA (1950) Analysis of choroid hyperkinesia in the rhesus monkey. Surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of luys. J Comp Neurol 92:293–331

    Google Scholar 

  • Carskadon MA, Brown ED, Dement WC (1982) Sleep fragmentation in the elderly: relationship to daytime sleep tendency. Neurobiol Aging 3:321–327

    Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AHV, National Institute for Clinical Excellence (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Google Scholar 

  • Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLoS ONE 6:e17290

    Google Scholar 

  • Daneault V, Orban P, Martin N, Dansereau C, Godbout J, Pouliot P, Dickinson P, Gosselin N, Vandewalle G, Maquet P, Lina J-M, Doyon J, Bellec P, Carrier J (2021) Cerebral functional networks during sleep in young and older individuals. Sci Rep 11:4905

    Google Scholar 

  • Dashti HM, Al-Zaid NS, Mathew TC, Al-Mousawi M, Talib H, Asfar SK, Behbahani AI (2006) Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem 286:1

    Google Scholar 

  • Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29:471–477

    Google Scholar 

  • Dijk D-J, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516:611–627

    Google Scholar 

  • Dijk D-J, Groeger JA, Stanley N, Deacon S (2010) Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. Sleep 33:211–223

    Google Scholar 

  • Döbrössy MD, Dunnett SB (2006) Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Eur J Neurosci 24:3223–3233

    Google Scholar 

  • Dong TA, Sandesara PB, Dhindsa DS, Mehta A, Arneson LC, Dollar AL, Taub PR, Sperling LSS (2020) Intermittent fasting: a heart healthy dietary pattern? Am J Med 133:901–907

    Google Scholar 

  • Duffy JF, Zeitzer JM, Rimmer DW, Klerman EB, Dijk D-J, Czeisler CA (2002) Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol-Endocrinol Metab 282:E297–E303

    Google Scholar 

  • Duncan MJ, Prochot JR, Cook DH, Tyler Smith J, Franklin KM (2013) Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res 1491:44–53

    Google Scholar 

  • Eisensehr I, Linke R, Noachtar S, Schwarz J, Gildehaus FJ, Tatsch K (2000) Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behavior disorder: comparison with Parkinson’s disease and controls. Brain 123:1155–1160

    Google Scholar 

  • Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians

    Google Scholar 

  • Epel E, Daubenmier J, Moskowitz JT, Folkman S, Blackburn E (2009) Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. Ann N Y Acad Sci 1172:34–53

    Google Scholar 

  • Esquifino AI, Cano P, Chacon F, Toso CFR, Cardinali DP (2002) Effect of aging on 24-hour changes in dopamine and serotonin turnover and amino acid and somatostatin contents of rat corpus striatum. NSG 11:336–344

    Google Scholar 

  • Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14(6):625–639

    Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  Google Scholar 

  • Feng H, Wen S-Y, Qiao Q-C, Pang Y-J, Wang S-Y, Li H-Y, Cai J, Zhang K-X, Chen J, Hu Z-A, Luo F-L, Wang G-Z, Yang N, Zhang J (2020) Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat Commun 11:3661

    Google Scholar 

  • Foley DJ, Monjan AA, Brown SL, Simonsick EM, Wallace RB, Blazer DG (1995) Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep 18:425–432

    Google Scholar 

  • Fritz, N.E., Busse, M., Jones, K., Khalil, H., Quinn, L., the Members of the Physiotherapy Working Group of the European Huntington’s Disease Network, 2017 Fritz NE, Busse M, Jones K, Khalil H, Quinn L, The Members of the Physiotherapy Working Group of the European Huntington’s Disease Network (2017) A classification system to guide physical therapy management in huntington disease: a case series. J Neurol Phys Ther 41:156–163

    Google Scholar 

  • Gard T, Taquet M, Dixit R, Hölzel BK, de Montjoye Y-A, Brach N, Salat DH, Dickerson BC, Gray JR, Lazar SW (2014) Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Front Aging Neurosci 6

    Google Scholar 

  • Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS, Leak RK (2014) Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res 357:43–54

    Google Scholar 

  • Goldberg NRS, Haack AK, Meshul CK (2011) Enriched environment promotes similar neuronal and behavioral recovery in a young and aged mouse model of Parkinson’s disease. Neuroscience 172:443–452

    Google Scholar 

  • Gong Y, Xiong KP, Mao CJ, Shen Y, Hu WD, Huang JY, Han F, Chen R, Liu CF (2014) Clinical manifestations of Parkinson disease and the onset of rapid eye movement sleep behavior disorder. Sleep Med 15(6):647–653

    Google Scholar 

  • Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, Cedeño MR, Nadarajah CJ, Ezerskiy LA, Colonna M, Zhang J, Bauer AQ, Burris TP, Musiek ES (2019) Circadian clock protein Rev-erbα regulates neuroinflammation. Proc Natl Acad Sci 116:5102–5107

    Google Scholar 

  • Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25:3195–3216

    Google Scholar 

  • Gupte AA, Morris JK, Zhang H, Bomhoff GL, Geiger PC, Stanford JA (2010) Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats. Neurosci Lett 472:90–93

    Google Scholar 

  • Héry M, Sémont A, Fache M-P, Faudon M, Héry F (2000) The effects of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. J Neurochem 74:406–413

    Google Scholar 

  • Hilario WF, Herlinger AL, Areal LB, de Moraes LS, Ferreira TAA, Andrade TES, Martins-Silva C, Pires RGW (2016) Cholinergic and dopaminergic alterations in nigrostriatal neurons are involved in environmental enrichment motor protection in a mouse model of Parkinson’s disease. J Mol Neurosci 60:453–464

    Google Scholar 

  • Hockly E, Cordery PM, Woodman B, Mahal A, Van Dellen A, Blakemore C, Lewis CM, Hannan AJ, Bates GP (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51:235–242

    Google Scholar 

  • Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Invest 127:437–446

    Google Scholar 

  • Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden Hamster. J Biol Rhythms 13:430–436

    Google Scholar 

  • Jankovic J, Rohaidy H (1987) Motor, behavioral and pharmacologic findings in Tourette’s syndrome. Can J Neurol Sci 14:541–546

    Google Scholar 

  • Johnson JB, Summer W, Cutler RG, Martin B, Hyun D-H, Dixit VD, Pearson M, Nassar M, Tellejohan R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 42:665–674

    Google Scholar 

  • Jungling A, Reglodi D, Karadi ZN, Horvath G, Farkas J, Gaszner B, Tamas A (2017) Effects of postnatal enriched environment in a model of Parkinson’s disease in adult rats. Int J Mol Sci 18:406

    Google Scholar 

  • Jyothi HJ, Vidyadhara DJ, Mahadevan A, Philip M, Parmar SK, Manohari SG, Shankar SK, Raju TR, Alladi PA (2015) Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36(12):3321–3333. S0197458015004418 https://doi.org/10.1016/j.neurobiolaging.2011.05

  • Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmächer T, Czisch M (2006) Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 129:655–667

    Google Scholar 

  • Kim YH, Marhon SA, Zhang Y, Steger DJ, Won K-J, Lazar MA (2018) Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 359:1274–1277

    Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Google Scholar 

  • Kou L, Chi X, Sun Y, Han C, Wan F, Hu J, Yin S, Wu J, Li Y, Zhou Q, Zou W, Xiong N, Huang J, Xia Y, Wang T (2022) The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome. J Neuroinflammation 19:133

    Google Scholar 

  • Kwok JYY, Kwan JCY, Auyeung M, Mok VCT, Chan HYL (2017) The effects of yoga versus stretching and resistance training exercises on psychological distress for people with mild-to-moderate Parkinson’s disease: study protocol for a randomized controlled trial. Trials 18(1):509

    Article  Google Scholar 

  • Li H, Satinoff E (1998) Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol 275:R1735-1744

    Google Scholar 

  • Li Y, Rong J, Zhong H, Liang M, Zhu C, Chang F, Zhou R (2021) Prenatal stress leads to the altered maturation of corticostriatal synaptic plasticity and related behavioral impairments through epigenetic modifications of Dopamine D2 receptor in mice. Mol Neurobiol 58:317–328

    Google Scholar 

  • Lima MMS (2013) Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev 17:367–375

    Google Scholar 

  • Marrocco J, Verhaeghe R, Bucci D, Di Menna L, Traficante A, Bouwalerh H, Van Camp G, Ghiglieri V, Picconi B, Calabresi P, Ravasi L, Cisani F, Bagheri F, Pittaluga A, Bruno V, Battaglia G, Morley-Fletcher S, Nicoletti F, Maccari S (2020) Maternal stress programs accelerated aging of the basal ganglia motor system in offspring. Neurobiol Stress 13:100265

    Google Scholar 

  • Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5:332–353

    Google Scholar 

  • Merry BJ (2004) Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell 3:7–12

    Google Scholar 

  • Mizrahi-Kliger AD, Kaplan A, Israel Z, Deffains M, Bergman H (2020) Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc Natl Acad Sci U S A 117(29):17359–17368. Epub 2020 Jul 7. PMID: 32636265; PMCID: PMC7382242

    Google Scholar 

  • Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, Palma A, Gentil P, Neri M, Paoli A (2016) Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 14:290

    Google Scholar 

  • Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, Roh JH, Ortiz-Gonzalez X, Dearborn JT, Culver JP, Herzog ED, Hogenesch JB, Wozniak DF, Dikranian K, Giasson BI, Weaver DR, Holtzman DM, FitzGerald GA (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 123

    Google Scholar 

  • Naskar A, Mahadevan A, Philip M, Alladi PA (2019) Aging mildly affects dendritic arborisation and synaptic protein expression in human substantia nigra pars compacta. J Chem Neuroanat 97:57–65. S0891061818301819. https://doi.org/10.1016/j.jchemneu.2019.02.001

  • Nieuwboer A, Kwakkel G, Rochester L, Jones D, van Wegen E, Willems AM, Chavret F, Hetherington V, Baker K, Lim I (2007) Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry 78:134–140

    Google Scholar 

  • Plecash AR, Leavitt BR (2014) Aquatherapy for neurodegenerative disorders. J Huntingt Dis 3:5–11

    Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Google Scholar 

  • Portero-Tresserra M, Rojic-Becker D, Vega-Carbajal C, Guillazo-Blanch G, Vale-Martínez A, Martí-Nicolovius M (2020) Caloric restriction modulates the monoaminergic system and metabolic hormones in aged rats. Sci Rep 10:19299

    Google Scholar 

  • Postuma RB, Gagnon JF, Bertrand JA, Marchand DG, Montplaisir JY (2015) Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology 84(11):1104–1113

    Google Scholar 

  • Postuma RB, Lang AE, Massicotte-Marquez J, Montplaisir J (2006) Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology 66(6):845–851

    Google Scholar 

  • Potter MC, Yuan C, Ottenritter C, Mughal M, van Praag H (2010) Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr 2:RRN1201

    Google Scholar 

  • Qiu M-H, Liu W, Qu W-M, Urade Y, Lu J, Huang Z-L (2012) The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS ONE 7:e45471

    Google Scholar 

  • Qiu MH, Vetrivelan R, Fuller PM, Lu J (2010) Basal ganglia control of sleep–wake behavior and cortical activation. Eur J Neurosci 31(3):499–507

    Google Scholar 

  • Quinn L, Hamana K, Kelson M, Dawes H, Collett J, Townson J, Roos R, van der Plas AA, Reilmann R, Frich JC, Rickards H, Rosser A, Busse M (2016) A randomized, controlled trial of a multi-modal exercise intervention in Huntington’s disease. Parkinsonism Relat Disord 31:46–52 

    Article  Google Scholar 

  • Raccagni C, Goebel G, Gaßner H, Granata R, Ndayisaba J-P, Seebacher B, Schoenherr G, Mitterhuber J, Hendriks P, Kaindlstorfer C, Eschlboeck S, Fanciulli A, Krismer F, Seppi K, Poewe W, Bloem BR, Klucken J, Wenning GK (2019) Physiotherapy improves motor function in patients with the Parkinson variant of multiple system atrophy: a prospective trial. Parkinsonism Relat Disord 67:60–65

    Google Scholar 

  • Raggi A, Bella R, Pennisi G, Neri W, Ferri R (2013) Sleep disorders in Parkinson’s disease: a narrative review of the literature. Rev Neurosci 24:279–291

    Google Scholar 

  • Rawson KS, McNeely ME, Duncan RP, Pickett KA, Perlmutter JS, Earhart GM (2019) Exercise and Parkinson disease: comparing tango, treadmill and stretching. J Neurol Phys Ther JNPT 43:26–32

    Google Scholar 

  • Reeves S, Bench C, Howard R (2002) Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370

    Google Scholar 

  • Ren C, Wang F, He K-J, Zhang Y-T, Li L-X, Zhang J-B, Chen J, Mao C-J, Liu C-F (2022) Early-life stress induces prodromal features of Parkinsonism in ageing rats. J Gerontol Ser A 77:705–716

    Google Scholar 

  • Renoir T, Pang TY, Zajac MS, Chan G, Du X, Leang L, Chevarin C, Lanfumey L, Hannan AJ (2012) Treatment of depressive-like behaviour in Huntington’s disease mice by chronic sertraline and exercise. Br J Pharmacol 165:1375–1389

    Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Google Scholar 

  • Schmid AA, Van Puymbroeck M, Koceja DM (2010, Apr) Effect of a 12-week yoga intervention on fear of falling and balance in older adults: a pilot study. Arch Phys Med Rehabil 91(4):576–583. PMID: 20382290

    Article  Google Scholar 

  • Singh Y, El-Hadidi M, Admard J, Wassouf Z, Schulze-Hentrich JM, Kohlhofer U, Quintanilla-Martinez L, Huson D, Riess O, Casadei N (2019) Enriched environmental conditions modify the gut microbiome composition and fecal markers of inflammation in Parkinson’s disease. Front Neurosci 13:1032

    Article  Google Scholar 

  • Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92

    Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    Google Scholar 

  • Stote KS, Baer DJ, Spears K, Paul DR, Harris GK, Rumpler WV, Strycula P, Najjar SS, Ferrucci L, Ingram DK, Longo DL, Mattson MP (2007) A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 85:981–988

    Google Scholar 

  • Sullivan FR, Bird ED, Alpay M, Cha J-HJ (2001) Remotivation therapy and Huntington’s disease. J Neurosci Nurs 33:136–142

    Google Scholar 

  • Suteerawattananon M, Morris GS, Etnyre BR, Jankovic J, Protas EJ (2004) Effects of visual and auditory cues on gait in individuals with Parkinson’s disease. J Neurol Sci 219:63–69

    Google Scholar 

  • Tang Y-Y, Fan Y, Lu Q, Tan L-H, Tang R, Kaplan RM, Pinho MC, Thomas BP, Chen K, Friston KJ, Reiman EM (2020) Long-term physical exercise and mindfulness practice in an aging population. Front Psychol 11

    Google Scholar 

  • Taniguchi H, Fernández AF, Setién F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Can Res 69:8447–8454

    Google Scholar 

  • Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K (2018) Intermittent fasting applied in combination with rotenone treatment exacerbates dopamine neurons degeneration in mice. Front Cell Neurosci 12:4

    Google Scholar 

  • Tran MD, Holly RG, Lashbrook J, Amsterdam EA (2001) Effects of hatha yoga practice on the health-related aspects of physical fitness. Prev Cardiol 4(4):165–170. PMID: 11832673

    Google Scholar 

  • Tolahunase M, Sagar R, Dada R (2017) Impact of yoga and meditation on cellular aging in apparently healthy individuals: a prospective, open-label single-arm exploratory study. Oxidative medicine and cellular longevity, 2017:1–9. https://doi.org/10.1155/2017/7928981

  • Vendette M, Gagnon JF, Decary A, Massicotte-Marquez J, Postuma RB, Doyon J, Panisset M, Montplaisir J (2007) REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology 69(19):1843–1849

    Google Scholar 

  • Verhave PS, Jongsma MJ, Van den Berg RM, Vis JC, Vanwersch RA, Smit AB, Van Someren EJ, Philippens IH (2011) REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep 34(8):1119–1125

    Google Scholar 

  • Vibha D, Shukla G, Goyal V, Singh S, Srivastava AK, Behari M (2011) RBD in Parkinson’s disease: a clinical case control study from North India. Clin Neurol Neurosurg 113(6):472–476

    Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725

    Google Scholar 

  • Włodarek D (2019) Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 11:169

    Google Scholar 

  • Wynchank D, Bijlenga D, Penninx BW, Lamers F, Beekman AT, Kooij JJS, Verhoeven JE (2019) Delayed sleep-onset and biological age: late sleep-onset is associated with shorter telomere length. Sleep 42:zsz139

    Google Scholar 

  • Wyse CA, Coogan AN (2010) Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain. Brain Res 1337:21–31

    Google Scholar 

  • Yoon I-Y, Kripke DF, Youngstedt SD, Elliott JA (2003) Actigraphy suggests age-related differences in napping and nocturnal sleep. J Sleep Res 12:87–93

    Google Scholar 

  • Zeitzer JM, Duffy JF, Lockley SW, Dijk D-J, Czeisler CA (2007) Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake. Sleep 30:1437–1443

    Google Scholar 

  • Zhang L, Lin Q-L, Lu L, Yang C-C, Li Y-L, Sun F-L, Wang D-H, Cai Y-N, Li L (2013) Tissue-specific modification of clock methylation in aging mice. Eur Rev Med Pharmacol Sci 17:1874–1880

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge ICMR SRFship to JHJ and NIMHANS SRFship to BB. We are also thankful to CSIR (27/332/18-EMR-II) and DBT (BT/PR12518/MED/30/1462/2014) for funding, to PAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phalguni Anand Alladi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jyothi, H.J., Bhaduri, B., Hingmire, M., Verma, P., Yasha, T.C., Alladi, P.A. (2023). Circadian Rhythmicity in Aging and Parkinson’s Disease. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_12

Download citation

Publish with us

Policies and ethics