Skip to main content

Insights from Deep Learning in Feature Extraction for Non-supervised Multi-species Identification in Soundscapes

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2022 (IBERAMIA 2022)

Abstract

Biodiversity monitoring has taken a relevant role in conservation management plans, where several methodologies have been proposed to assess biological information of landscapes. Recently, soundscape studies have allowed biodiversity monitoring by compiling all the acoustic activity present in landscapes in audio recordings. Automatic species detection methods have shown to be a practical tool for biodiversity monitoring, providing insight into the acoustic behavior of species. Generally, the proposed methodologies for species identification have four main stages: signal pre-processing, segmentation, feature extraction, and classification. Most proposals use supervised methods for species identification and only perform for a single taxon. In species identification applications, performance depends on extracting representative species features. We present a feature extraction analysis for multi-species identification in soundscapes using unsupervised learning methods. Linear frequency cepstral coefficients (LFCC), variational autoencoders (VAE), and the KiwiNet architecture, which is a convolutional neural network (CNN) based on VGG19, were evaluated as feature extractors. LFCC is a frequency-based method, while VAE and KiwiNet belong to the deep learning area. In ecoacoustic applications, frequency-based methods are the most widely used. Finally, features were tested by a clustering algorithm that allows species recognition from different taxa. The unsupervised approaches performed multi-species identification between 78%–95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pimm, S.L., et al.: Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015). https://doi.org/10.1016/j.tree.2015.08.008

    Article  Google Scholar 

  2. Dumyahn, S.L., Pijanowski, B.C.: Soundscape conservation. Landsc. Ecol. 26, 1327–1344 (2011). https://doi.org/10.1007/s10980-011-9635-x

    Article  Google Scholar 

  3. Sueur, J., Farina, A.: Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8(3), 493–502 (2015). https://doi.org/10.1007/s12304-015-9248-x

    Article  Google Scholar 

  4. Aide, T.M., Hern, A., Campos-cerqueira, M.: Species richness (of insects) drives the use of acoustic space in the tropics. Remote Sens. Ecol. Conserv., 1–12 (2017). https://doi.org/10.3390/rs9111096

  5. Ross, S.-J., Friedman, N.R., Dudley, K.L., Yoshimura, M., Yoshida, T., Economo, E.P.: Listening to ecosystems: data-rich acoustic monitoring through landscape-scale sensor networks. Ecol. Res. 33(1), 135–147 (2017). https://doi.org/10.1007/s11284-017-1509-5

    Article  Google Scholar 

  6. Ruff, Z.J., Lesmeister, D.B., Duchac, L.S., Padmaraju, B.K., Sullivan, C.M.: Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92 (2020). https://doi.org/10.1002/rse2.125

    Article  Google Scholar 

  7. Bedoya, C., Isaza, C., Daza, J.M., López, J.D.: Automatic recognition of anuran species based on syllable identification. Ecol. Inform. 24, 200–209 (2014). https://doi.org/10.1016/j.ecoinf.2014.08.009

    Article  Google Scholar 

  8. LeBien, J., et al.: A pipeline for identification of bird and frog species in tropical soundscape recordings using a convolutional neural network. Ecol. Inform. 59, 101113 (2020). https://doi.org/10.1016/j.ecoinf.2020.101113

    Article  Google Scholar 

  9. Ruff, Z.J., Lesmeister, D.B., Appel, C.L., Sullivan, C.M.: Workflow and convolutional neural network for automated identification of animal sounds. Ecol. Indic. 124, 107419 (2021). https://doi.org/10.1016/j.ecolind.2021.107419

    Article  Google Scholar 

  10. Stowell, D.: Computational bioacoustic scene analysis. In: Computational Analysis of Sound Scenes and Events, pp. 303–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63450-0

  11. Xie, J., Colonna, J.G., Zhang, J.: Bioacoustic signal denoising: a review. Artif. Intell. Rev. 54(5), 3575–3597 (2020). https://doi.org/10.1007/s10462-020-09932-4

    Article  Google Scholar 

  12. Noda, J.J., David Sánchez-Rodríguez, C.M.T.-G.: We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech 32, 137–144 (2018)

    Google Scholar 

  13. Nirosha Priyadarshani, S.M., Castro, I.: Automated birdsong recognition in complex acoustic environments: a review. Avian Biol. (2018). https://doi.org/10.1111/jav.01447

  14. Rowe, B., Eichinski, P., Zhang, J., Roe, P.: Acoustic auto-encoders for biodiversity assessment. Ecol. Inform. 62, 101237 (2021). https://doi.org/10.1016/j.ecoinf.2021.101237

    Article  Google Scholar 

  15. Ntalampiras, S., Potamitis, I.: Acoustic detection of unknown bird species and individuals. CAAI Trans. Intell. Technol. 6, 291–300 (2021). https://doi.org/10.1049/cit2.12007

    Article  Google Scholar 

  16. Xie, J., Hu, K., Guo, Y., Zhu, Q., Yu, J.: On loss functions and CNNs for improved bioacoustic signal classification. Ecol. Inform. 64, 101331 (2021). https://doi.org/10.1016/j.ecoinf.2021.101331

    Article  Google Scholar 

  17. Bedoya, C.L., Molles, L.E.: Acoustic censusing and individual identification of birds in the wild (2021)

    Google Scholar 

  18. Stowell, D.: Computational bioacoustics with deep learning: a review and roadmap. PeerJ 10, e13152 (2022). https://doi.org/10.7717/peerj.13152

    Article  Google Scholar 

  19. Xie, J., Towsey, M., Zhu, M., Zhang, J., Roe, P.: An intelligent system for estimating frog community calling activity and species richness. Ecol. Indic. 82, 13–22 (2017). https://doi.org/10.1016/j.ecolind.2017.06.015

    Article  Google Scholar 

  20. Mermelstein, P.: Distance measures for speech recognition, psychological and instrumental. Pattern Recognit. Artif. Intell. 116, 374–388 (1976)

    Google Scholar 

  21. Zhou, X., Garcia-Romero, D., Duraiswami, R., Carol Espy-Wilson, S.S.: 2011 IEEE Workshop on Automatic Speech Recognition & Understanding: ASRU 2011: Proceedings, Waikoloa, Hawaii, U.S.A., 11–15 December 2011, p. 564 (2011)

    Google Scholar 

  22. Dong, C., Xue, T., Wang, C.: The feature representation ability of variational autoencoder. Proceedings - 2018 IEEE Third International Conference on Data Science in Cyberspace, DSC 2018, pp. 680–684 (2018). https://doi.org/10.1109/DSC.2018.00108

  23. Fukumoto, T.: Anomaly detection using Variational Autoencoder (VAE) (2020). https://github.com/mathworks/Anomaly-detection-using-Variational-Autoencoder-VAE-/releases/tag/1.0.1, GitHub. Accessed 23 Apr 2022

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations ICLR 2015 - Conference Track Proceedings, pp. 1–14 (2015)

    Google Scholar 

  25. Lamrini, B., Le Lann, M.V., Benhammou, A., Lakhal, E.K.: Detection of functional states by the “LAMDA” classification technique: application to a coagulation process in drinking water treatment. Comptes Rendus Phys. 6, 1161–1168 (2005). https://doi.org/10.1016/j.crhy.2005.11.017

    Article  Google Scholar 

  26. Bedoya, C., Waissman Villanova, J., Isaza Narvaez, C.V.: Yager–Rybalov triple Π operator as a means of reducing the number of generated clusters in unsupervised anuran vocalization recognition. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS (LNAI), vol. 8857, pp. 382–391. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13650-9_34

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Universidad de Antioquia, Instituto Tecnológico Metropolitano de Medellín, Alexander von Humboldt Institute for Research on Biological Resources and Colombian National Fund for Science, Technology and Innovation, Francisco Jose de Caldas - MINCIENCIAS (Colombia) [Program No. 111585269779].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero, M.J., Restrepo, J., Nieto-Mora, D.A., Daza, J.M., Isaza, C. (2022). Insights from Deep Learning in Feature Extraction for Non-supervised Multi-species Identification in Soundscapes. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22419-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22418-8

  • Online ISBN: 978-3-031-22419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics