Skip to main content

The New Forms of Functional Hypothalamic Amenorrhoea

  • Chapter
  • First Online:
Amenorrhea

Part of the book series: ISGE Series ((ISGE))

  • 284 Accesses

Abstract

The main triggers of functional hypothalamic amenorrhoea are stress, weight loss, or excessive exercise, but the pathogenesis is not always immediately clear. This chapter highlights what is known about the pathophysiology of this form of menstrual dysfunction, as well as the steps for diagnostic evaluation, with a particular focus on less defined clinical situations as borderline energy deficiency, amenorrhoea that persists after weight recovery, and overlap of hypothalamic amenorrhoea with polycystic ovary syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon CM, Ackerman KE, Berga SL, Kaplan JR, et al. Functional hypothalamic amenorrhea: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102:1413–9.

    Article  PubMed  Google Scholar 

  2. Caronia LM, Martin C, Welt CK, et al. A genetic basis for functional hypothalamic amenorrhea. N Engl J Med. 2011;364(3):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Delaney A, Burkholder AB, Lavender CA, et al. Increased burden of rare sequence variants in GnRH associated genes in women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 2020;106(3):e1441–552.

    Article  PubMed Central  Google Scholar 

  4. Romeo RD. Adolescence: a central event in shaping stress reactivity. Dev Psychobiol. 2010;52(3):244–53.

    PubMed  Google Scholar 

  5. Loucks AB. The response of luteinizing hormone pulsatility to 5 days of low energy availability disappears by 14 years of gynecological age. J Clin Endocrinol Metab. 2006;91(8):3158–64.

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell DM, Tuck P, Ackerman KE, et al. Altered trabecular bone morphology in adolescent and young adult athletes with menstrual dysfunction. Bone. 2015;81:24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shufelt C, Torbati T, Dutra E. Hypothalamic amenorrhea and the long-term consequences. Semin Reprod Med. 2017;35(3):256–62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prokai D, Berga SL. Neuroprotection via reduction in stress: altered menstrual patterns as a marker for stress and implications for long-term neurologic health in women. Int J Mol Sci. 2016;17:2147–53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tena-Sempere M. Neuroendocrinology in 2016: neuroendocrine control of metabolism and reproduction. Nat Rev Endocrinol. 2017;13(2):67–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hrabovsky R. Neuroanatomy of human kisspeptin system. Neuroendocrinology. 2014;99:33–48.

    Article  Google Scholar 

  11. Lehman MN, He W, Coolen LM, et al. Does the KNDy model for the control of gonadotropin-releasing hormone pulses apply to monkeys and humans? Semin Reprod Med. 2019;37:71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy v homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Navarro VM. Metabolic regulation of kisspeptin—the link between energy balance and reproduction. Nat Rev Endocrinol. 2020;16(8):407–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Childs GV, Odle AK, MacNicol MC, et al. The importance of leptin to reproduction. Endocrinology. 2021;162(2):bqaa204.

    Article  PubMed  Google Scholar 

  15. Wahab F, Khan IU, Polo IR, Zubair H, et al. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J Endocrinol. 2019;241(3):175–87.

    Article  CAS  PubMed  Google Scholar 

  16. Li XF, Knox AM, O’Byrne KT. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res. 2010;1364:153–63.

    Article  CAS  PubMed  Google Scholar 

  17. Brundu B, Loucks TL, Adler LJ, et al. Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 2006;91(4):1561–5.

    Article  CAS  PubMed  Google Scholar 

  18. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266(3 Pt 2):R817–23.

    CAS  PubMed  Google Scholar 

  19. López M, Varela L, Vázquez MJ, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2017;232(2):351–62.

    Article  PubMed  Google Scholar 

  21. Zhang Z, Boelen A, Bisschop PH, et al. Hypothalamic effects of thyroid hormone. Mol Cell Endocrinol. 2017;15(458):143–8.

    Article  Google Scholar 

  22. Fleming S, Morrison AE, Levy MJ. A review of the pathophysiology of functional hypothalamic amenorrhoea in women subject to psychological stress, disordered eating, excessive exercise or a combination of these factors. Clin Endocrinol (Oxf). 2021;95(2):229–38.

    Article  PubMed  Google Scholar 

  23. Mauras N, Haymond MW. Are the metabolic effects of GH and IGF-I separable? Growth Horm IGF Res. 2005;15(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  24. Barbe P, Bennet A, Stebenet M, et al. Sex-hormone-binding globulin and protein-energy malnutrition indexes as indicators of nutritional status in women with anorexia nervosa. Am J Clin Nutr. 1993;57(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  25. Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1(8):754–64.

    Article  CAS  PubMed  Google Scholar 

  26. Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278:E43–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura Y, Walker BR, Ikuta T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress. 2016;19(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, et al. Exercise and the stress system. Hormones. 2005;4(2):73–89.

    PubMed  Google Scholar 

  29. Cohen S, Williamson G. Perceived stress in a probability sample of the United States. In: Spacapan S, Oskamp S, editors. The social psychology of health. Newbury Park: Sage; 1988.

    Google Scholar 

  30. Teo SI, Chong CL. A systematic approach to imaging the pelvis in amenorrhea. Abdom Radiol (NY). 2021;46(7):3326–41.

    Article  PubMed  Google Scholar 

  31. Nakamura S, Douchi T, Oki T, et al. Relationship between sonographic endometrial thickness and progestin-induced withdrawal bleeding. Obstet Gynecol. 1996;87(5 Pt 1):722–5.

    Article  CAS  PubMed  Google Scholar 

  32. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  33. Bandini LG, Must A, Naumova EN, et al. Change in leptin, body composition and other hormones around menarche—a visual representation. Acta Paediatr. 2008;97:1454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCarthy HD, Cole TJ, Fry T, et al. Body fat reference curves for children. Int J Obes. 2006;30:598–602.

    Article  CAS  Google Scholar 

  35. Klungland Torstveit M, Sundgot-Borgen J. Are under- and overweight female elite athletes thin and fat? A controlled study. Med Sci Sports Exerc. 2012;44(5):949–57.

    Article  PubMed  Google Scholar 

  36. Bacopoulou F, Lambrou GI, Rodanaki ME, et al. Serum kisspeptin concentrations are negatively correlated with body mass index in adolescents with anorexia nervosa and amenorrhea. Hormones (Athens). 2017;16(1):33–41.

    PubMed  Google Scholar 

  37. Bruni V, Dei M, Morelli C, et al. Body composition variables and leptin levels in functional hypothalamic amenorrhea and amenorrhea related to eating disorders. J Pediatr Adolesc Gynecol. 2011;24(6):347–52.

    Article  PubMed  Google Scholar 

  38. Marra M, Di Vincenzo V, Cioffi I, et al. Resting energy expenditure in elite athletes: development of new predictive equations based on anthropometric variables and bioelectrical impedance analysis derived phase angle. J Int Soc Sports Nutr. 2021;18(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bailly M, Boscaro A, Pereira B, et al. Underweight but not underfat: is fat-free mass a key factor in constitutionally thin women? Eur J Clin Nutr. 2021;75(12):1764–70.

    Article  CAS  PubMed  Google Scholar 

  40. Lassek WD, Gaulin SJC. Brief communication: menarche is related to fat distribution. Am J Phys Anthropol. 2007;133(4):1147–51.

    Article  PubMed  Google Scholar 

  41. Lam YY, Ravussin E. Analysis of energy metabolism in humans: a review of methodologies. Mol Metab. 2016;5(11):1057–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strock NCA, Koltun KJ, Southmayd EA, et al. Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. Int J Sport Nutr Exerc Metab. 2020;30(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  43. Pape J, Herbison AE, Leeners B. Recovery of menses after functional hypothalamic amenorrhoea: if, when and why. Hum Reprod Update. 2021;27(1):130–53.

    Article  CAS  PubMed  Google Scholar 

  44. Dei M, Seravalli V, Bruni V, et al. Predictors of recovery of ovarian function after weight gain in subjects with amenorrhea related to restrictive eating disorders. Gynecol Endocrinol. 2008;24(8):459–64.

    Article  CAS  PubMed  Google Scholar 

  45. Traboulsi S, Itani L, Tannir H, et al. Is body fat percentage a good predictor of menstrual recovery in females with anorexia nervosa after weight restoration? A systematic review and exploratory and selective meta-analysis. J Popul Ther Clin Pharmacol. 2019;26(2):e25–37.

    Article  PubMed  Google Scholar 

  46. Tokatly Latzer I, Kidron-Levy H, Stein D, et al. Predicting menstrual recovery in adolescents with anorexia nervosa using body fat percent estimated by bioimpedance analysis. J Adolesc Health. 2019;64(4):454–60.

    Article  PubMed  Google Scholar 

  47. Sterling WM, Golden NH, Jacobson MS, et al. Metabolic assessment of menstruating and non-menstruating normal weight adolescents. Int J Eat Disord. 2009;42(7):658–63.

    Article  PubMed  Google Scholar 

  48. Keski-Rahkonen A, Raevuori A, Bulik CM, et al. Factors associated with recovery from anorexia nervosa: a population-based study. Int J Eat Disord. 2014;47(2):117–23.

    Article  PubMed  Google Scholar 

  49. Stockford C, Stenfert Kroese B, Beesley A, et al. Women’s recovery from anorexia nervosa: a systematic review and meta-synthesis of qualitative research. Eat Disord. 2019;27(4):343–36.

    Article  PubMed  Google Scholar 

  50. Podfigurna A, Maciejewska-Jeske M, Meczekalski B, et al. Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine. 2020;70:635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robinson L, Micali N, Misra M. Eating disorders and bone metabolism in women. Curr Opin Pediatr. 2017;29(4):488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carmina E, Fruzzetti F, Lobo RA. Increased anti-Mullerian hormone levels and ovarian size in a subgroup of women with functional hypothalamic amenorrhea: further identification of the link between polycystic ovary syndrome and functional hypothalamic amenorrhea. Am J Obstet Gynecol. 2016;214(6):714.e1–6.

    Article  CAS  PubMed  Google Scholar 

  53. Villa P, Rossodivita A, Fulghesu AM. Insulin and GH secretion in adolescent girls with irregular cycles: polycystic vs multifollicular ovaries. J Endocrinol Invest. 2003;26(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  54. Prioletta A, Muscogiuri G, Sorice GP, et al. In anorexia nervosa, even a small increase in abdominal fat is responsible for the appearance of insulin resistance. Clin Endocrinol (Oxf). 2011;75(2):202–6.

    Article  CAS  PubMed  Google Scholar 

  55. Kim Y, Hildebrandt T, Mayer LES. Differential glucose metabolism in weight restored women with anorexia nervosa. Psychoneuroendocrinology. 2019;110:104404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carmina E, Fruzzetti F, Lobo RA. Features of polycystic ovary syndrome (PCOS) in women with functional hypothalamic amenorrhea (FHA) may be reversible with recovery of menstrual function. Gynecol Endocrinol. 2018;34(4):301–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruni, V., Dei, M., Ambroggio, S. (2023). The New Forms of Functional Hypothalamic Amenorrhoea. In: Genazzani, A.R., Hirschberg, A.L., Genazzani, A.D., Nappi, R., Vujovic, S. (eds) Amenorrhea. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22378-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22378-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22377-8

  • Online ISBN: 978-3-031-22378-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics