Skip to main content

Pelvic Radiation Disease and the Gastrointestinal Tract

  • Chapter
  • First Online:
Intestinal Failure

Abstract

Radiation to treat a tumour in the pelvis may lead to side effects in the normal tissues surrounding it. Pelvic Radiation Disease is defined as: “transient or longer term problems, ranging from mild to very severe, arising in non-cancerous tissues resulting from radiotherapy treatment to a tumour located in the pelvis”. Symptoms tend to start during the second week of treatment and peak by the fourth to fifth week. Chronic radiation-induced side effects affecting daily activities are substantially more common than generally recognised. Successful treatment of gastrointestinal (GI) symptoms after radiotherapy is frequent if checklists (algorithms) are followed and often fails when empirical treatments are tried. In this chapter we will discuss further the pathophysiology, epidemiology and management of pelvic radiation disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreyev HJN. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 2007;8:1007–17.

    PubMed  Google Scholar 

  2. Wang J, Hauer-Jensen M. Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury. Br J Radiol. 2007;80(Spec. 1):S41–8.

    CAS  PubMed  Google Scholar 

  3. Ferreira MR, Muls A, Dearnaley DP, Andreyev HJN. Microbiota and radiation-induced bowel toxicity - lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014;15(3):e139–47.

    PubMed  Google Scholar 

  4. Denham JW, Hauer-Jensen M, Peters LJ. Is it time for a new formalism to categorize normal tissue radiation injury? Int J Radiat Oncol Biol Phys. 2001;50(5):1105–6.

    CAS  PubMed  Google Scholar 

  5. Bourne RG, Kearsley JH, Grove WD, Roberts SJ. The relationship between early and late gastrointestinal complications of radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 1983;9:1445–50.

    CAS  PubMed  Google Scholar 

  6. Peters LJ, Ang KK, Thames HD Jr. Accelerated fractionation in the radiation treatment of head and neck cancer. A critical comparison of different strategies. Acta Oncol. 1988;27:185–94.

    CAS  PubMed  Google Scholar 

  7. Hauer-Jensen M, Denham JW, Andreyev HJN. Radiation enteropathy—pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol. 2014;11(8):470–9. https://doi.org/10.1038/nrgastro.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andreyev HJN, Wotherspoon A, Denham JW, Hauer-Jensen M. “Pelvic radiation disease”: new understanding and new solutions for a new disease in the era of cancer survivorship. Scand J Gastroenterol. 2011;46:389–97.

    PubMed  Google Scholar 

  9. Andreyev HJ, Vlavianos P, Blake P, et al. Gastrointestinal symptoms after pelvic radiotherapy: role for the gastroenterologist? Int J Radiat Oncol Biol Phys. 2005;62:1464–71.

    PubMed  Google Scholar 

  10. Andreyev HJN. Gastrointestinal complications of pelvic radiotherapy: are they of importance? Gut. 2005;54:1051–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kozelsky T, Meyers G, Sloan J, et al. Phase III double-blind study of glutamine versus placebo for the prevention of acute diarrhea in patients receiving pelvic radiation therapy. J Clin Oncol. 2003;21:1669–74.

    CAS  PubMed  Google Scholar 

  12. Dahlberg M, Glimelius B, Graf W, Pahlman L. Preoperative irradiation affects functional results after surgery for rectal cancer. Dis Colon Rectum. 1998;41(5):543–51.

    CAS  PubMed  Google Scholar 

  13. Lundby L, Krogh K, Jensen V, et al. Long-term anorectal dysfunction after postoperative radiotherapy for rectal cancer. Dis Colon Rectum. 2005;48:1343–52.

    PubMed  Google Scholar 

  14. Downing A, Morris EJA, Richards M, Corner J, Wright P, Sebag-Montefiore D, Finan P, Kind P, Wood C, Lawton S, Feltbower R, Wagland R, Vernon S, Thomas J, Glaser AW. Health-related quality of life after colorectal cancer in England: a patient-reported outcomes study of Individuals12 to 36 months after diagnosis. J Clin Oncol. 2015;33:616–24.

    PubMed  Google Scholar 

  15. Bacon C, Giovannucci E, Testa M, Glass T, Kawachi I. The association of treatment-related symptoms with quality-of-life outcomes for localized prostate carcinoma patients. Cancer. 2002;94:862–71.

    PubMed  Google Scholar 

  16. Andreyev HJN. Gastrointestinal problems after pelvic radiotherapy: the past, the present and the future. Clin Oncol. 2007;19:790–9.

    CAS  Google Scholar 

  17. Andreyev HJ, Davidson SE, Gillespie C, Allum WH, Swarbrick E. Practice guidance on the management of acute and chronic gastrointestinal problems arising as a result of treatment for cancer. Gut. 2012;61(2):179–92.

    CAS  PubMed  Google Scholar 

  18. Taylor S, Byrne A, Adams R, Turner J, Hanna L, Staffurth J, Farnell D, Sivell S, Nelson A, Green J. Clin Oncol (R Coll Radiol). 2016;28(10):e139–47.

    CAS  PubMed  Google Scholar 

  19. Davidson SE, Faithfull S. Late radiotherapy effects: is bowel morbidity adequately documented or patients’ needs managed appropriately? Clin Oncol. 2006;18:419–20.

    CAS  Google Scholar 

  20. Gillespie C, Goode C, Hackett C, Andreyev HJ. Aliment Pharmacol Ther. 2007;26(4):555–63.

    CAS  PubMed  Google Scholar 

  21. Chen TYT, Emmertsen KJ, Laurberg S. Bowel dysfunction after rectal cancer treatment: a study comparing the specialist’s versus patient’s perspective. BMJ Open. 2013;4:e003374.

    Google Scholar 

  22. Tom A, Bennett AV, Rothenstein D, Law E, Goodman KA. Prevalence of patient-reported gastrointestinal symptoms and agreement with clinician toxicity assessments in radiation therapy for anal cancer. Qual Life Res. 2018;27(1):97–103.

    PubMed  Google Scholar 

  23. Olopade FO, Norman AR, Blake P, Dearnaley DP, Harrington KJ, Khoo V, et al. The inflammatory bowel disease questionnaire and the Vaizey incontinence questionnaire are useful to identify gastrointestinal toxicity after pelvic radiotherapy. Br J Cancer. 2005;92:1663–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andreyev J, Ross P, Donnellan C, Lennan E, Leonard P, Waters C, et al. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 2014;15:e447–60.

    PubMed  Google Scholar 

  25. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4.

    CAS  PubMed  Google Scholar 

  26. Andreyev HJN. GI consequences of cancer treatment: a clinical perspective. Radiat Res. 2016;185:341–8.

    PubMed  Google Scholar 

  27. Capp A, Inostroza-Ponta M, Bill D, Moscato P, Lai C, Christie D, Lamb D, Turner S, Joseph D, Matthews J, Atkinson C, North J, Poulsen M, Spry NA, Tai KH, Wynne C, Duchesne G, Steigler A, Denham JW. Is there more than one proctitis syndrome? A revisitation using data from the TROG 96.01 trial. J Radiother Oncol. 2009;90:400–7.

    Google Scholar 

  28. Muls M, Klimova K, Andreyev HJN. Clinical decision-making in managing changes in gastrointestinal function following cancer therapies: is experience enough? Eur J Cancer Care. 2018;27:e12766.

    Google Scholar 

  29. Andreyev HJ, Benton BE, Lalji A, Norton C, Mohammed K, Gage H, Lindsay JO. Algorithm-based management of patients with gastrointestinal symptoms in patients after pelvic radiation treatment (ORBIT): a randomised controlled trial. Lancet. 2013;382(9910):2084–92.

    PubMed  Google Scholar 

  30. Gupta A, Muls AC, Lalji A, Thomas K, Watson L, Shaw C, Andreyev HJ. Outcomes from treating bile acid malabsorp- tion using a multidisciplinary approach. Support Care Cancer. 2015;23(10):2881–90. https://doi.org/10.1007/s00520-015-2653-5.

    Article  PubMed  Google Scholar 

  31. Henson CC, Davidson SE, Ang Y, Babbs C, Crampton J, Kelly M, et al. Structured gastroenterological intervention and improved outcome for patients with chronic gastrointestinal symptoms following pelvic radiotherapy. Support Care Cancer. 2013;21(8):2255–65.

    PubMed  Google Scholar 

  32. Muls AC, Lalji A, Marshall C, Butler L, Shaw C, Vyoral S, et al. The holistic management of consequences of cancer treat- ment by a gastrointestinal and nutrition team: A financially viable ap- proach to an enormous problem? Clin Med (Lond). 2016;16(3):240–6.

    PubMed  Google Scholar 

  33. Andreyev HJN, Muls AC, Norton C, et al. Guidance: the practical management of the gastrointestinal symptoms of pelvic radiation disease. Frontline Gastroenterol. 2014;6:53–72. https://doi.org/10.1136/flgastro-2014-100468.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Andreyev HJ. Pelvic radiation disease. Color Dis. 2015;17(1):2–6.

    CAS  Google Scholar 

  35. Wedlake L, Thomas K, McGough C, Andreyev HJN. Small bowel bacterial overgrowth and lactose intolerance during radical pelvic radiotherapy: an observational study. Eur J Cancer. 2008;44(15):2212–7.

    CAS  PubMed  Google Scholar 

  36. Ludgate S, Merrick M. The pathogenesis of post-irradiation chronic diarrhoea: measurement of SeHCAT and B12 absorption for differential diagnosis determines treatment. Clin Radiol. 1985;36:275–8.

    CAS  PubMed  Google Scholar 

  37. Danielsson A, Nyhlin H, Persson H, et al. Chronic diarrhoea after radiotherapy for gynaecological cancer: occurrence and aetiology. Gut. 1991;32:1180–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stryker J, Hepner G, Mortel R. The effect of pelvic irradiation on ileal function. Radiology. 1977;124:213–6.

    CAS  PubMed  Google Scholar 

  39. Grace E, Shaw C, Whelan K, Andreyev HJN. Review article: small intestinal bacterial overgrowth - prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther. 2013;38(7):674–88.

    CAS  PubMed  Google Scholar 

  40. Yeoh E, Lui D, Lee N. The mechanism of diarrhoea resulting from pelvic and abdominal radiotherapy; a prospective study using selenium-75 labelled conjugated bile acid and cobalt-58 labelled cyanocobalamin. Br J Radiol. 1984;57:1131–6.

    CAS  PubMed  Google Scholar 

  41. Miholic J, Vogelsang H, Schlappack O, et al. Small bowel function after surgery for chronic radiation enteritis. Digestion. 1989;42:30–8.

    CAS  PubMed  Google Scholar 

  42. Heusinkveld R, Manning M, Aristizabal S. Control of radiation- induced diarrhea with cholestyramine. Int J Radiat Oncol Biol Phys. 1978;4:687–90.

    CAS  PubMed  Google Scholar 

  43. Yeoh E, Horowitz M, Russo A, et al. Effect of pelvic irradiation on gastrointestinal function. Am J Med. 1993;95:397–406.

    CAS  PubMed  Google Scholar 

  44. Newman A, Katsaris J, Blendis L, et al. Small-intestinal injury in women who have had pelvic radiotherapy. Lancet. 1973;2:1471–3.

    CAS  PubMed  Google Scholar 

  45. Scarpello J, Sladen G. Malabsorption in relation to abdominal irradiation and quadruple chemotherapy for lymphosarcoma. Postgrad Med J. 1977;53:218–21.

    PubMed Central  Google Scholar 

  46. Schuster J, Stryker J, Demers L, Mortel R. Absence of bile acid malabsorption as a late effect of pelvic irradiation. Int J Radiat Oncol Biol Phys. 1986;12:1605–10.

    CAS  PubMed  Google Scholar 

  47. Bosaeus I, Andersson H, Nystrom C. Effect of a low-fat diet on bile salt excretion and diarrhoea in the gastrointestinal radiation syndrome. Acta Radiol Oncol Radiat Phys Biol. 1979;18:460–4.

    CAS  PubMed  Google Scholar 

  48. Phillips F, Muls AC, Lalji A, Andreyev HJ. Are bile acid malabsorption and bile acid diarrhoea important causes of loose stool complicating cancer therapy? Color Dis. 2015;17(8):730–4.

    CAS  Google Scholar 

  49. Arlow F, Dekovich A, Priest R, Beher W. Bile acids in radiation- induced diarrhea. South Med J. 1987;80:1259–61.

    CAS  PubMed  Google Scholar 

  50. Hofmann A, Poley J. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology. 1972;62:918–34.

    CAS  PubMed  Google Scholar 

  51. Ford GA, Preece JD, Davies IH, Wilkinson SP. Use of SeHCAT test in the investigation of diarrhoea. Postgrad Med J. 1992;68:272–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Puleston J, Morgan H, Andreyev HJN. New treatment for bile salt malabsorption. Gut. 2005;54:441–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiss R, Stryker J. 14C-lactose breath tests during pelvic radiotherapy: the effect of the amount of small bowel irradiated. Radiology. 1982;142:507–10.

    CAS  PubMed  Google Scholar 

  54. Olmos R, den Hartog JF, Hoefnagel C, Taal B. Imaging and retention measurements of selenium 75 homocholic acid conjugated with taurine, and the carbon 14 glycochol breath test to document ileal dysfunction due to late radiation damage. Eur J Nucl Med. 1991;18:124–8.

    CAS  PubMed  Google Scholar 

  55. Beer W, Fan A, Halsted C. Clinical and nutritional implications of radiation enteritis. Am J Clin Nutr. 1985;41:85–91.

    CAS  PubMed  Google Scholar 

  56. Pickles T, Phillips N. The risk of second malignancy in men with prostate cancer treated with or without radiation in British Columbia, 1984–2000. Radiother Oncol. 2002;65:145–51.

    PubMed  Google Scholar 

  57. Boice JDJ, Engholm G, Kleinerman RA, et al. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res. 1988;116:3–55.

    PubMed  Google Scholar 

  58. Kleinerman R, Boice JJ, Storm H, et al. Second primary cancer after treatment for cervical cancer. An international cancer registries study. Cancer. 1995;76:442–52.

    CAS  PubMed  Google Scholar 

  59. Brenner D, Curtis R, Hall E, Ron E. Second malignancies in prostate carcinoma patients after pelvic radiotherapy compared with surgery. Cancer. 2000;88:398–406.

    CAS  PubMed  Google Scholar 

  60. Baxter NN, Tepper JE, Durham SB, et al. Increased risk of rectal cancer after prostate radiation: a population-based study. Gastroenterology. 2005;128:819–24.

    PubMed  Google Scholar 

  61. Mitchell C, Simpson F, Davison A, Losowsky M. Radiation pancreatitis: a clinical entity? Digestion. 1979;19:134–6.

    CAS  PubMed  Google Scholar 

  62. Kingham J, Barrett A. Pancreatic insufficiency following abdominal irradiation. Postgrad Med J. 1980;56:804–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen T, Bugat R, Combes P. Postoperative irradiation of carcinoma of the head of the pancreas area: short-time tolerance and results to precision high-dose technique in 18 patients. Cancer. 1982;50:53–6.

    CAS  PubMed  Google Scholar 

  64. Sindelar WF, Hoekstra H, Restrepo C, Kinsella TJ. Pathological tissue changes following intraoperative radiotherapy. Am J Clin Oncol. 1986;9:504–9.

    CAS  PubMed  Google Scholar 

  65. Levy P, Menzelxhiu A, Paillot B, et al. Abdominal radiotherapy is a cause for chronic pancreatitis. Gastroenterology. 1993;105:905–9.

    CAS  PubMed  Google Scholar 

  66. Dookeran K, Thompson M, Allum W. Pancreatic insufficiency secondary to abdominal radiotherapy. Eur J Surg Oncol. 1993;19:95–6.

    CAS  PubMed  Google Scholar 

  67. Santhiswaroop V, Dhir V, Mohandas KM. Abdominal radiotherapy and chronic pancreatitis. Gastroenterology. 1994;107:632.

    CAS  PubMed  Google Scholar 

  68. Ratzkowski E, Hochman A. Gastro-intestinal function after abdominal cobalt irradiation. Acta Radiol Ther Phys Biol. 1968;7:417–32.

    CAS  PubMed  Google Scholar 

  69. Rao SS, Dundas S, Holdsworth CD. Intestinal lymphangiectasia secondary to radiotherapy and chemotherapy. Dig Dis Sci. 1987;32:939–42.

    CAS  PubMed  Google Scholar 

  70. al-Abany M, Helgason A, Cronqvist A, et al. Long-term symptoms after external beam radiation therapy for prostate cancer with three or four fields. Acta Oncol. 2002;41:532–42.

    PubMed  Google Scholar 

  71. Henningsohn L, Wijkstrom H, Dickman P, et al. Distressful symptoms after radical radiotherapy for urinary bladder cancer. Radiother Oncol. 2002;62:215–25.

    PubMed  Google Scholar 

  72. Bergmark K, Avall-Lundqvist E, Dickman P, et al. Patient-rating of distressful symptoms after treatment for early cervical cancer. Acta Obstet Gynecol Scand. 2002;81:443–50.

    PubMed  Google Scholar 

  73. Badvie S, Andreyev HJN. Topical phenylephrine in the treatment of radiation-induced faecal incontinence. Clin Oncol. 2005;17:122–6.

    CAS  Google Scholar 

  74. Widmark A, Fransson P, Tavelin B. Self-assessment questionnaire for evaluating urinary and intestinal late side effects after pelvic radiotherapy in patients with prostate cancer compared with an age-matched control population. Cancer. 1994;74:2520–32.

    CAS  PubMed  Google Scholar 

  75. Crook J, Esche B, Futter N. Effect of pelvic radiotherapy for prostate cancer on bowel, bladder, and sexual function: the patient’s perspective. Urology. 1996;47:387–94.

    CAS  PubMed  Google Scholar 

  76. Dearnaley D, Khoo V, Norman A, et al. Comparison of radiation side effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353:267–72.

    CAS  PubMed  Google Scholar 

  77. Gami B, Harrington K, Blake P, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Ther. 2003;18:987–94.

    CAS  PubMed  Google Scholar 

  78. Boersma L, van den Brink M, Bruce A, et al. Estimation of the incidence of late bladder and rectum complications after high-dose (70–78 Gy) conformal radiotherapy for prostate cancer, using dose- volume histograms. Int J Radiat Oncol Biol Phys. 1998;41:83–92.

    Google Scholar 

  79. Chun M, Kang S, Kil H-J, et al. Rectal bleeding and its management after irradiation for uterine cervical cancer. Int J Radiat Oncol Biol Phys. 2004;58:98–105.

    PubMed  Google Scholar 

  80. Fuccio L, Guido A, Andreyev HJN. Management of intestinal complications in patients with pelvic radiation disease. Clin Gastroenterol Hepatol. 2012;10:1326–34.

    PubMed  Google Scholar 

  81. Denham JW, Hauer-Jensen M. The radiotherapeutic injury–a com- plex “wound”. Radiother Oncol. 2002;63:129–45.

    PubMed  Google Scholar 

  82. Brenn T, Fletcher CD. Postradiation vascular proliferations: an increasing problem. Histopathology. 2006;48:106–14.

    CAS  PubMed  Google Scholar 

  83. Williams HR, Vlavianos P, Blake P, et al. The significance of rectal bleeding after pelvic radiotherapy. Aliment Pharmacol Ther. 2005;21:1085–90.

    CAS  PubMed  Google Scholar 

  84. Goldner G, Pötter R, Kranz A, et al. Healing of late endoscopic changes in the rectum between 12 and 65 months after external beam radiotherapy. Strahlenther Onkol. 2011;187:202–5.

    PubMed  Google Scholar 

  85. Postgate A, Saunders B, Tjandra J, et al. Argon plasma coagula- tion in chronic radiation proctitis. Endoscopy. 2007;39:361–5.

    CAS  PubMed  Google Scholar 

  86. Musunuri AS, Prabhakar B, Rao PK, et al. Topical formalin vs argon plasma coagulation for radiation proctitis–experience of a tertiary referral hospital in South India. Gastrointest Endosc. 2006;63(5):PAB205.

    Google Scholar 

  87. Tam WCE, Moore J, Conroy-Hiller TA, et al. Prospective randomised treatment trial of argon plasma coagulation and topical formalin for radiation proctitis. Gastrointest Endosc. 2001;53: AB1–240:AB184.

    Google Scholar 

  88. Taïeb S, Rolachon A, Cenni JC, et al. Effective use of argon plasma coagulation in the treatment of severe radiation proctitis. Dis Colon Rectum. 2001;44:1766–71.

    PubMed  Google Scholar 

  89. Cullen SN, Frenz M, Mee A. Treatment of haemorrhagic radiation-induced proctopathy using small volume topical formalin instillation. Aliment Pharmacol Ther. 2006;23:1575–9.

    CAS  PubMed  Google Scholar 

  90. Villavicencio RT, Rex DK, Rahmani E. Efficacy and complications of argon plasma coagulation for hematochezia related to radiation proctopathy. Gastrointest Endosc. 2002;55:70–4.

    PubMed  Google Scholar 

  91. de Parades V, Etienney I, Bauer P, et al. Formalin application in the treatment of chronic radiation-induced hemorrhagic proctitis–an effective but not risk-free procedure: a prospective study of 33 patients. Dis Colon Rectum. 2005;48:1535–41.

    PubMed  Google Scholar 

  92. Saclarides TJ, King DG, Franklin JL, et al. Formalin instillation for refractory radiation-induced hemorrhagic proctitis. Report of 16 patients. Dis Colon Rectum. 1996;39:196–9.

    CAS  PubMed  Google Scholar 

  93. Ravizza D, Fiori G, Trovato C, et al. Frequency and outcomes of rectal ulcers during argon plasma coagulation for chronic radia- tion-induced proctopathy. Gastrointest Endosc. 2003;57:519–25.

    PubMed  Google Scholar 

  94. Denton AS, Bentzen SM, Maher EJ. How useful are observational reports in the evaluation of interventions for radiation morbidity? An analysis of formalin therapy for late radiation proctitis. Radiother Oncol. 2002;64:291–5.

    CAS  PubMed  Google Scholar 

  95. Hou JK, Abudayyeh S, Shaib Y. Treatment of chronic radiation proctitis with cryoablation. Gastrointest Endosc. 2011;73:383–9.

    PubMed  Google Scholar 

  96. Zhou C, Adler DC, Becker L, et al. Effective treatment of chronic radiation proctitis using radiofrequency ablation. Therap Adv Gastroenterol. 2009;2:149–56.

    PubMed  PubMed Central  Google Scholar 

  97. Henson CC, Andreyev HJ, Symonds RP, et al. Late-onset bowel dysfunction after pelvic radiotherapy: a national survey of current practice and opinions of clinical oncologists. Clin Oncol (R Coll Radiol). 2011;23:552–7.

    CAS  PubMed  Google Scholar 

  98. Denton AS, Andreyev HJ, Forbes A, et al. Systematic review for non-surgical interventions for the management of late radiation proctitis. Br J Cancer. 2002;87:134–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cavcić J, Turcić J, Martinac P, et al. Metronidazole in the treatment of chronic radiation proctitis: clinical trial. Croat Med J. 2000;41:314–8.

    PubMed  Google Scholar 

  100. Kochhar R, Patel F, Dhar A, et al. Radiation-induced proctosig- moiditis. Prospective, randomized, double-blind controlled trial of oral sulfasalazine plus rectal steroids versus rectal sucralfate. Dig Dis Sci. 1991;36:103–7.

    CAS  PubMed  Google Scholar 

  101. Denton A, Forbes A, Andreyev HJN, Maher EJ. Non-surgical interventions for late radiation proctitis in patients who have received radical radiotherapy to the pelvis. Cochrane Database Syst Rev. 2002;1:CD003455.

    Google Scholar 

  102. Feldmeier J, Hampson N. A systematic review of the literature reporting the application of hyperbaric oxygen prevention and treatment of delayed radiation injuries: an evidence based approach. Undersea Hyperb Med. 2002;29:4–30.

    CAS  PubMed  Google Scholar 

  103. Clarke RE, et al. Hyperbaric oxygen treatment of chronic refractory radiation proctitis: a randomized and controlled double-blind crossover trial with long-term follow-up. Int J Radiat Oncol Biol Phys. 2008;72(1):134–43.

    CAS  PubMed  Google Scholar 

  104. Glover M, et al. Hyperbaric oxygen for patients with chronic bowel dysfunction after pelvic radiotherapy (HOT2): a randomised, double-blind, sham-controlled phase 3 trial. Lancet Oncol. 2016;17(2):224–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Okunieff P, Chen Y, Maguire DJ, Huser AK. Molecular markers of radiation-related Normal tissue toxicity. Cancer Metastasis Rev. 2008;27(3):363–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh VK, Garcia M, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part II. Countermeasures for limited indications, internalized radionuclides, emesis, late effects, and agents demonstrating efficacy in large animals with or without FDA IND status. Int J Radiat Biol. 2017;93(9):870–84.

    CAS  PubMed  Google Scholar 

  107. Berbée M, Hauer-Jensen M. Novel drugs to ameliorate gastro-intestinal normal tissue radiation toxicity in clinical practice: what is emerging from the laboratory. Curr Opin Support Palliat Care. 2012;6(1):54–9.

    PubMed  PubMed Central  Google Scholar 

  108. Morgenstern L, Hiatt N. Injurious effect of pancreatic secretions on post-radiation enteropathy. Gastroenterology. 1967;53(6):923–9.

    CAS  PubMed  Google Scholar 

  109. Wang J, Zheng H, Sung CC, Hauer-Jensen M. The synthetic somatostatin analogue, octreotide, ameliorates acute and delayed intestinal radiation injury. Int J Radiat Oncol Biol Phys. 1999;45(5):1289–96.

    CAS  PubMed  Google Scholar 

  110. Abbasoglu SD, Erbil Y, Eren T, et al. The effect of heme oxygenase-1 induction by octreotide on radiation enteritis. Peptides. 2006;27(6):1570–6.

    CAS  PubMed  Google Scholar 

  111. Yavuz MN, Yavuz AA, Aydin F, et al. The efficacy of octreotide in the therapy of acute radiation-induced diarrhea: a randomized controlled study. Int J Radiat Oncol Biol Phys. 2002;54(1):195–202.

    CAS  PubMed  Google Scholar 

  112. Zachariah B, Gwede CK, James J, et al. Octreotide acetate in prevention of chemoradiation-induced diarrhea in anorectal cancer: randomized RTOG trial 0315. J Natl Cancer Inst. 2010;102(8):547–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu Q, Berbee M, Wang W, et al. Preclinical evaluation of SOM230 as a radiation mitigator in a mouse model: postexposure time window and mechanisms of action. Radiat Res. 2011;175(6):728–35; This study shows that the somatostatin analogue SOM230 inhibits pancreatic secretion and reduces radiation-induced mortality even when administration is started as late as 48 hours after radiation exposure.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Farrell CL, Bready JV, Rex KL, et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res. 1998;58(5):933–9.

    CAS  PubMed  Google Scholar 

  115. Matsuu-Matsuyama M, Nakashima M, Shichijo K, et al. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine. Radiat Res. 2010;174:52–61.

    CAS  PubMed  Google Scholar 

  116. Nakayama F, Hagiwara A, Umeda S, et al. Post treatment with an FGF chimeric growth factor enhances epithelial cell proliferation to improve recovery from radiation-induced intestinal damage. Int J Radiat Oncol Biol Phys. 2010;78(3):860–7.

    CAS  PubMed  Google Scholar 

  117. Farrell CL, Rex KL, Chen JN, et al. The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Prolif. 2002;35(Suppl 1):78–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Torres S, Thim L, Milliat F, et al. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys. 2007;69(5):1563–71.

    CAS  PubMed  Google Scholar 

  119. Booth C, Booth D, Williamson S, et al. Teduglutide ([Gly2]GLP-2) protects small intestinal stem cells from radiation damage. Cell Prolif. 2004;37(6):385–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Oh H, Seong J, Kim W, et al. Recombinant human epidermal growth factor (rhEGF) protects radiation-induced intestine injury in murine system. J Radiat Res. 2010;51(5):535–41.

    CAS  PubMed  Google Scholar 

  121. Bhanja P, Saha S, Kabarriti R, et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 2009;4(11):e8014.

    PubMed  PubMed Central  Google Scholar 

  122. Deng W, Shuyu E, Tsukahara R, et al. The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury. Gastroenterology. 2007;132(5):1834–51.

    CAS  PubMed  Google Scholar 

  123. Fukata M, Chen A, Klepper A, et al. Cox-2 is regulated by toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131(3):862–77.

    CAS  PubMed  Google Scholar 

  124. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.

    CAS  PubMed  Google Scholar 

  125. Vijay-Kumar M, Aitken JD, Sanders CJ, et al. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J Immunol. 2008;180(12):8280–5.

    CAS  PubMed  Google Scholar 

  126. Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320(5873):226–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jones RM, Sloane VM, Wu H, et al. Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity. Gut. 2011;60(5):648–57.

    CAS  PubMed  Google Scholar 

  128. Abreu MT. Harnessing the power of bacteria to protect the gut. N Engl J Med. 2008;359(7):756–9.

    CAS  PubMed  Google Scholar 

  129. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.

    CAS  PubMed  Google Scholar 

  130. Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene. 2003;22(37):5897–906.

    CAS  PubMed  Google Scholar 

  131. Bonnaud S, Niaudet C, Legoux F, et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res. 2010;70(23):9905–15.

    CAS  PubMed  Google Scholar 

  132. Haydont V, Bourgier C, Pocard M, et al. Pravastatin inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res. 2007;13(18 Pt 1):5331–40.

    CAS  PubMed  Google Scholar 

  133. Wang J, Boerma M, Fu Q, et al. Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys. 2007;68(5):1483–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang Z, Lee MJ, Zhao Y, Yang CS. Metabolism of tocotrienols in animals and synergistic inhibitory actions of tocotrienols with atorvastatin in cancer cells. Genes Nutr. 2012;7(1):11–8.

    CAS  PubMed  Google Scholar 

  135. Naito Y, Shimozawa M, Kuroda M, et al. Tocotrienols reduce 25-hydroxycholesterol-induced monocyte-endothelial cell interaction by inhibiting the surface expression of adhesion molecules. Atherosclerosis. 2005;180(1):19–25.

    CAS  PubMed  Google Scholar 

  136. Pearce BC, Parker RA, Deason ME, et al. Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem. 1992;35(20):3595–606.

    CAS  PubMed  Google Scholar 

  137. Kumar KS, Raghavan M, Hieber K, et al. Preferential radiation sensitization of prostate cancer in nude mice by nutraceutical antioxidant gamma-tocotrienol. Life Sci. 2006;78(18):2099–104.

    CAS  PubMed  Google Scholar 

  138. Kunnumakkara AB, Sung B, Ravindran J, et al. Gamma-tocotrienol inhibits pancreatic tumours and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Cancer Res. 2010;70(21):8695–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mahalingam D, Radhakrishnan AK, Amom Z, et al. Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. Eur J Clin Nutr. 2011;65(1):63–9.

    CAS  PubMed  Google Scholar 

  140. Rasool AH, Yuen KH, Yusoff K, et al. Dose dependent elevation of plasma tocotrienol levels and its effect on arterial compliance, plasma total antioxidant status, and lipid profile in healthy humans supplemented with tocotrienol rich vitamin E. J Nutr Sci Vitaminol (Tokyo). 2006;52(6):473–8.

    CAS  PubMed  Google Scholar 

  141. Potten CS. Interleukin-11 protects the clonogenic stem cells in murine small-intestinal crypts from impairment of their reproductive capacity by radiation. Int J Cancer. 1995;62:356–61.

    CAS  PubMed  Google Scholar 

  142. Potten CS. Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells. 1996;14:452–9.

    CAS  PubMed  Google Scholar 

  143. Soligenix Inc. OrbeShield™ for gastrointestinal acute radiation syndrome (GI ARS). Princeton, NJ: Soligenix, Inc.;2016. http://www.soligenix.com/pipeline/vaccinesbiodefense/orbeshield-for-gastrointestinal-acute-radiation-syndrome-gi-ars/. Accessed 24 Sept 2018.

  144. Georges GE, Kuver RP, Jordan R, Aragon A, Yang Y, Lesnikova M, Lesnikov V, Sale GE, McDonald GB. Post-exposure oral 17,21-beclomethasone dipropionate (BDP) improves survival in a canine gastrointestinal acute radiation syndrome (GI-ARS) model. Poster presented at: 58th annual meeting of the Radiation Research Society, San Juan (PR); 2012.

    Google Scholar 

  145. Singh VK, Christensen J, Fatanmi OO, Gille D, Ducey EJ, Wise SY, Karsunky H, Sedello AK. Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res. 2012;177:781–91.

    CAS  PubMed  Google Scholar 

  146. Cellerant Therapeutics. CLT-008 myeloid progenitor cells [online]. Cellerant therapeutics. 2013. http://www.cellerant.com/. Accessed 24 Sept 2018.

  147. Yin L, Gupta R, Vaught L, Grosche A, Okunieff P, Vidyasagar S. An amino acid-based oral rehydration solution (AA-ORS) enhanced intestinal epithelial proliferation in mice exposed to radiation. Sci Rep. 2016;6:37220.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9.

    CAS  PubMed  Google Scholar 

  150. Bowen R, Miller P, Shanahan MT, Packey CD, Sartor RB. Radiation exposure induces dysbioses throughout the small intestinal and colonic lumen and mucosa that resemble those seen in human inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(suppl 2):S86.

    Google Scholar 

  151. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;13:2826–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Segain JP, de la Blétière DR, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47:397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Plöger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258:52–9.

    PubMed  Google Scholar 

  154. Hsiao WW, Metz C, Singh DP, Roth J. The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Endocrinol Metab Clin N Am. 2008;37:857–71.

    CAS  Google Scholar 

  155. Craven M, Egan CE, Dowd SE, et al. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s disease. PLoS One. 2012;7:e41594.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hille A, Herrmann MK, Kertesz T, et al. Sodium butyrate enemas in the treatment of acute radiation-induced proctitis in patients with prostate cancer and the impact on late proctitis. A prospective evaluation. Strahlenther Onkol. 2008;184:686–92.

    PubMed  Google Scholar 

  157. Manichanh C, Varela E, Martinez C, et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol. 2008;103:1754–61.

    CAS  PubMed  Google Scholar 

  158. Covington JA, Wedlake L, Andreyev J, et al. The detection of patients at risk of gastrointestinal toxicity during pelvic radiotherapy by electronic nose and FAIMS: a pilot study. Sensors (Basel). 2012;12:13002–18.

    CAS  PubMed  Google Scholar 

  159. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16:559–64.

    CAS  PubMed  Google Scholar 

  160. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, D., Andreyev, J. (2023). Pelvic Radiation Disease and the Gastrointestinal Tract. In: Nightingale, J.M. (eds) Intestinal Failure. Springer, Cham. https://doi.org/10.1007/978-3-031-22265-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22265-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22264-1

  • Online ISBN: 978-3-031-22265-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics