Skip to main content

Intestinal Failure in Critical Care

  • Chapter
  • First Online:
Intestinal Failure

Abstract

Accurate diagnosis and classification of intestinal failure in the intesive care unit (ICU) provides better treatment and thus prevention of complications. The importance of nutritional support, enterally or parenterally, increases survival and reduces length of hospital stay. Nutritional targets, route and composition of macronutrients should be set early and followed throughout the course of the illness. Special situations must be kept in mind and adjustments should be made regularly. Finally, monitoring for potential complications is the key for improved outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pironi L, Arends J, Shaffer J, Home Artificial Nutrition and Chronic Intestinal Failure and the Acute Intestinal Failure Special Interest Groups of ESPEN. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34:171–80.

    PubMed  Google Scholar 

  2. Blaser AR, Ploegmakers I, Benoit M, et al. Acute intestinal failure: international multicenter point-of-prevalence study. Clin Nutr. 2020;39:151–8.

    Google Scholar 

  3. Blaser AR, Jakob SM, Starkopt J. Gastrointestinal failure in the ICU. Cur Opin Crit Care. 2016;22:128–41.

    Google Scholar 

  4. Kaiser MJ, Bauer JM, Ramsch C, et al. Frequency of malnutrition in older adults: a multinational perspective using the mini nutritional assessment. J Am Geriatr Soc. 2010;58(9):1734–8.

    PubMed  Google Scholar 

  5. Sheean PM, Peterson SJ, Chen Y, et al. Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU). Clin Nutr. 2013;32:752–7.

    PubMed  PubMed Central  Google Scholar 

  6. Eckart A, Struja T, Schuetz P, et al. Relationship of nutritional status, inflammation, and serum albumin levels during acute illness: a prospective study. Am J Med. 2020;133(6):713–22e7.

    CAS  PubMed  Google Scholar 

  7. Zhang Z, Pereira SL, Matheson EM, et al. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis. Nutrients. 2017;9(8):829.

    PubMed  PubMed Central  Google Scholar 

  8. Rattanachaiwong S, Zribi B, Kagan I, et al. Comparison of nutritional screening and diagnostic tools in the diagnosis of severe malnutrition in critically ill patients. Clin Nutr. 2020;39(11):3419–25.

    PubMed  Google Scholar 

  9. Cederholm T, Jensen GL, Correia MITD, et al. GLIM Criteria for the diagnosis of malnutrition – A consensus report from, the global clinical nutrition community. Clin Nutr. 2019;38:1–9.

    CAS  PubMed  Google Scholar 

  10. Theilla M, Rattanachaiwong S, Singer P, et al. Validation of GLIM malnutrition criteria for diagnosis of malnutrition in ICU patients: an observational study. Clin Nutr. 2020;40:3578–84.

    PubMed  Google Scholar 

  11. Vanhorebeek I, Latronico N, Van den Berghe G. ICU acquired weakness. Intensive Care Med. 2020;46(4):637–53.

    PubMed  PubMed Central  Google Scholar 

  12. Mundi MS, Patel JJ, Martindale R. Body composition technology: implication for the ICU. Nutr Clin Pract. 2019;34(1):48–58.

    PubMed  Google Scholar 

  13. Gluer CC. 30 years of DXA technology innovations. Bone. 2017;104:7–12.

    PubMed  Google Scholar 

  14. Shen W, Punyanitya M, Heshka S. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97:2333–8.

    PubMed  Google Scholar 

  15. Weijs PJ, Looijaard WG, Dekker IM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12.

    PubMed  PubMed Central  Google Scholar 

  16. Ju S, Choi SM, Park YS, et al. Rapid muscle loss negatively impacts survival in critically ill patients with cirrhosis. J Intensive Care Med. 2020;35:663–71.

    PubMed  Google Scholar 

  17. Tieland M, van Dronkelaar C, Boirie Y, et al. Sarcopenic obesity in the ICU. Curr Opin Clin Nutr Metab Care. 2019;22:162–6.

    PubMed  Google Scholar 

  18. Singer P, Blaser AR, Bischoff SC. ESPEN guidelines on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48–79.

    PubMed  Google Scholar 

  19. Dickerson RN. Hypocaloric, high-protein nutrition therapy for critically ill patients with obesity. Nutr Clin Pract. 2014;29:786e91.

    Google Scholar 

  20. Zusman O, Theilla M, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016;20:367.

    PubMed  PubMed Central  Google Scholar 

  21. Tappy L, Chiolero R. Substrate utilization in sepsis and multiple organ failure. Crit Care Med. 2007;35(9):531–4.

    Google Scholar 

  22. McClave SA, Taylor BE, Braunschweig C. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40(2):159e211.

    Google Scholar 

  23. Gomes F, Schuetz P, Cederholm T. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin Nutr. 2018;37(1):336–53.

    PubMed  Google Scholar 

  24. Arends J, Bachmann P, Bozzetti F. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36(1):11–48.

    PubMed  Google Scholar 

  25. Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of under prescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. J Parenter Enter Nutr. 2016;40(2):212–25.

    CAS  Google Scholar 

  26. Zusman O, Kagan I, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr. 2019;38(3):1206–10.

    PubMed  Google Scholar 

  27. Stapel SN, de Grooth HJ, Oudemans-van Straaten HM. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.

    PubMed  PubMed Central  Google Scholar 

  28. Rousing ML, Hahn-Pedersen MH, Preiser JC. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6:16.

    PubMed  PubMed Central  Google Scholar 

  29. Oshima T, Graf S, Pichard C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit Care. 2017;21:13.

    PubMed  PubMed Central  Google Scholar 

  30. Kagan I, Zusman O, Singer P. Validation of carbon dioxide production (Vco2) as a tool to alculte resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study. Crit Care. 2018;22:186.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bousie E, Van Blokland D, Van Zanten ARH. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur J Clin Nutr. 2016;70:1443–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deane AM, Summers MJ, Zaknic AV, et al. Glucose absorption and small intestinal transit in critical illness. Crit Care Med. 2011;39(6):1282–8.

    PubMed  Google Scholar 

  33. Van den Berg B, Bogaard JM, Hop WC. High fat, low carbohydrate, enteral feeding in patients weaning from the ventilator. Int Care Med. 1994;20(7):470.

    Google Scholar 

  34. Alish CJ, Garvey WT, Maki KC. A diabetes-specific enteral formula improves glycemic variability in patients with type 2 diabetes. Diabetes Technol Ther. 2010;12(6):419–25.

    CAS  PubMed  Google Scholar 

  35. Van Steen SC, Rijkenberg S, Van Der Voort PHJ. Glycemic effects of a low-carbohydrate enteral formula compared with an enteral formula of standard composition in critically ill patients: an open-label randomized controlled clinical trial. J Parenter Enter Nutr. 2018;42(6):1035–45.

    Google Scholar 

  36. Van Den Berghe G, Wouters P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    PubMed  Google Scholar 

  37. The NICE STUDY Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Google Scholar 

  38. Yatabe T, Inoue S, Egi M. The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med. 2017;43:16–28.

    CAS  PubMed  Google Scholar 

  39. Egi M, Bellomo R, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.

    CAS  PubMed  Google Scholar 

  40. Ali NA, O’Brien JM Jr, Preiser JC. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36:2316–21.

    PubMed  PubMed Central  Google Scholar 

  41. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.

    CAS  PubMed  Google Scholar 

  42. Krinsley JS, Preiser JC. Time in blood glucose range 70 to 140 mg/dL >80% is strongly associated with increased survival in non-diabetic patients. Crit Care Med. 2015;19:179.

    Google Scholar 

  43. Lanspa MJ, Krinsley JS, Hirshberg EL. Percentage of time in range 70 to 139 mg/dL is associated with reduced mortality among critically ill patients receiving insulin infusion. Chest. 2019;156:878–86.

    PubMed  Google Scholar 

  44. Calder PC, Adolph M, Singer P. Lipid in the intensive care unit: recommendations from the ESPEN expert group. Clin Nutr. 2018;37:1–18.

    CAS  PubMed  Google Scholar 

  45. Calder PC. Functional roll of fatty acids and their effect on human health. J Parenter Enter Nutr. 2015;39:18S–32S.

    Google Scholar 

  46. Koekkoek KW, Panteleon V, van Zanten AR. Current evidence on v-3 fatty acids in enteral nutrition in the critically ill: a systematic review and meta-analysis. Nutrition. 2019;59:56–68.

    CAS  Google Scholar 

  47. Battistella FD, Widergren JT, MacColl K. A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition. J Trauma. 1997;43:52–8.

    CAS  PubMed  Google Scholar 

  48. Furukawa K, Yamamori H, Tashiro T. Influences of soybean oil emulsion on stress response and cell mediated immune function in moderately or severely stressed patients. Nutrition. 2002;18:235–40.

    CAS  PubMed  Google Scholar 

  49. Dai YJ, Sun LL, Wang W. Comparison of formulas based on lipid emulsions of olive oil, soybean oil, or several oils for parenteral nutrition: a systematic review and meta-analysis. Adv Nutr. 2016;15:279–86.

    Google Scholar 

  50. Pradelli L, Mayer K, Muscaritoli M. Ω-3 Fatty acid enriched parenteral nutrition in hospitalized patients: systematic review with meta-analysis and trial sequential analysis. J Parenter Enter Nutr. 2020;44:44–57.

    CAS  Google Scholar 

  51. Biolo G, Tipton KD, Kelin S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Phys. 1997;273:E122–9.

    CAS  Google Scholar 

  52. Singer P, Glass YD, Kagan I. The best recipe: fat based, protein based, single amino acid? Curr Opin Crit Care. 2020;26(4):335–40.

    PubMed  Google Scholar 

  53. Nicolo M, Heyland DK, Compher C. Clinical outcome related to protein delivery in the critically ill population: a multicenter, multinational observation study. J Parenter Enter Nutr. 2016;40:45–51.

    CAS  Google Scholar 

  54. Compher C, Chittams J, Heyland DK. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study. Crit Care Med. 2017;45:156–63.

    PubMed  Google Scholar 

  55. Allingstrup MJ, Kondrup J, Wils J. Early goal directed nutrition versus standard of care in adult intensive patients: the single center, randomized, outcome assessor blinded EAT-ICU trail. Intensive Care Med. 2017;43:1637–47.

    PubMed  Google Scholar 

  56. Arends J, Bodoky G, Znader A. ESPEN guidelines on enteral nutrition: non-surgical oncology. Clin Nutr. 2006;25:245–59.

    CAS  PubMed  Google Scholar 

  57. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363:1895–902.

    CAS  PubMed  Google Scholar 

  58. Bendavid I, Zusman O, Singer P, et al. Early adminestraion of protein in critically ill patients: a retrospective cohort study. Nut. 2019;11:106.

    CAS  Google Scholar 

  59. Koekkoek WAC, van Setten CH, van Zanten ARH, et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENtilation: the PROTINVENT retrospective study. Clin Nutr. 2019;38:883–90.

    PubMed  Google Scholar 

  60. Rodas PC, Rooyackers O, Wernerman J, et al. Glutamine and glutathione at ICU admission in relation to outcome. Clin Sci (Lond). 2012;122(12):591–7.

    CAS  PubMed  Google Scholar 

  61. Oehler R, Pusch E, Dungel P, et al. Glutamine depletion impairs cellular stress response in human leucocytes. Br J Nutr. 2002;87:S17–21.

    CAS  PubMed  Google Scholar 

  62. Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.

    CAS  PubMed  Google Scholar 

  63. van Zanten AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312(5):514–24.

    PubMed  Google Scholar 

  64. Wilkinson DJ, Hossain T, Ashcroft S, et al. Impact of the calcium form of beta-hydroxy-beta-methylbutyrate upon human skeletal muscle protein metabolism. Clin Nutr. 2018;37:2068–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bear DE, Langan A, Dimidi E, et al. b-Hydroxy-b-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109:1119–32.

    PubMed  Google Scholar 

  66. Nakamura K, Kihata A, Naraba H, et al. Morimura-b-hydroxy-b-methylbutyrate arginine, and glutamine complex on muscle volume loss in critically ill patients: a randomized control trial. JPEN J Parenter Enteral Nutr. 2020;44:205–12.

    CAS  PubMed  Google Scholar 

  67. Vankrunkelsven W, Gunst J, Casaer MP. Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: the VITA-TRACE survey. Clin Nutr. 2021;40(2):590–9.

    CAS  PubMed  Google Scholar 

  68. Valenta J, Brodska H, Kazda A. High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Int Care Med. 2011;37:808–15.

    CAS  Google Scholar 

  69. Bloos F, Trips E, Reinhart K. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med. 2016;176(9):1266–76.

    PubMed  Google Scholar 

  70. Schmidt T, Pargger H, Seeberger E, Eckhart F, von Felten S, Haberthur C. Effect of high-dose sodium selenite in cardiac surgery patients: a randomized controlled bi-center trial. Clin Nutr. 2018;37(4):1172–80.

    CAS  PubMed  Google Scholar 

  71. Tonelli M, Wiebe N, Thompson S, Kinniburgh D, Klarenbach SW, Walsh M, et al. Trace element supplementation in hemodialysis patients: a randomized controlled trial. BMC Nephrol. 2015;16:52.

    PubMed  PubMed Central  Google Scholar 

  72. Ben-Hamouda N, Charrière M, Voirol P, Berger MM. Massive copper and selenium losses cause life-threatening defciencies during prolonged continuous renal replacement. Nutrition. 2017;34:71–5.

    CAS  PubMed  Google Scholar 

  73. Singer P, Manzanares W, Berger MM. What’s new in trace elements? Int Care Med. 2018;44(5):643–5.

    Google Scholar 

  74. Gungabissoon U, Hacquoil K, Bains C. Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness. J Parenter Enter Nutr. 2015;39:441–8.

    Google Scholar 

  75. Ridley EJ, Daives AR, McGuinness S, for the Supplemental Parenteral Nutrition Clinical Investigators. Supplemental parenteral nutrition versus usual care in critically ill adults: a pilot randomized control study. Crit Care. 2018;22:12.

    PubMed  PubMed Central  Google Scholar 

  76. Elke G, van Zanten ARH, Heyland DK. Enteral versus parenteral nutrition in critically ill patients: an updated systemic review and meta-analysis of randomized controlled trails. Crit Care. 2016;20:117.

    PubMed  PubMed Central  Google Scholar 

  77. Hellerman IM, Singer P. Advances in medical nutrition therapy: parenteral nutrition. Nutrients. 2020;12:717.

    Google Scholar 

  78. Harvey SE, Parrott F, Rowan KM, for the CALORIES Trail Investigators. Trail of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84.

    PubMed  Google Scholar 

  79. Reignier J, Boisrame-Helms J, Le Gouge A, for the NUTRIREA-2 Trail Investigators and the Clinical Research in Intensive Care and Sepsis (CRICS) Group. Enteral versus Parenteral early nutrition in ventilated adults with shock: a randomized, controlled, multicenter, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391:133–43.

    PubMed  Google Scholar 

  80. Blaser AR, Starkopf J. Alhazzani W and the ESICM working group on gastrointestinal function. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017;43:380–98.

    Google Scholar 

  81. Heidegger CP, Berger MM, Pichard C. Optimization of energy provision with supplemental parenteral nutrition in critically ill patients: a randomized controlled trial. Lancet. 2013;381:385–93.

    PubMed  Google Scholar 

  82. Casaer MP, Messoten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults (EPaNIC). N Engl J Med. 2011;365:506–17.

    CAS  PubMed  Google Scholar 

  83. Tian F, Heighes PT, Diog GS. Early enteral nutrition provided within 24 hours of ICU admission: a meta-analysis of randomized control trails. Crit Care Med. 2018;46(7):1049–56.

    PubMed  Google Scholar 

  84. Atherton PJ, Etheridge T, Watt PW, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92:1080–8.

    CAS  PubMed  Google Scholar 

  85. Puthucheary Z, Gunst J. Are periods of feeding and fasting protective during critical illness? Cur Opin Clin Nutr Metab Care. 2021;24:183–8.

    Google Scholar 

  86. McNelly AS, Bear DE, Connolly BA, et al. Effect of intermittent or continuous feed on muscle wasting in critical illness: a phase 2 clinical trial. Chest. 2020;158:183–94.

    CAS  PubMed  Google Scholar 

  87. Chowdhury AH, Murray K, Lobo D, et al. Effects of bolus and continuous nasogastric feeding on gastric emptying, small bowel water content, superior mesenteric artery blood flow, and plasma hormone concentrations in healthy adults: a randomized crossover study. Ann Surg. 2016;263:450–7.

    PubMed  Google Scholar 

  88. Rhoney DH, Parker D Jr, Coplin WM, et al. Tolerability of bolus versus continuous gastric feeding in brain-injured patients. Neurol Res. 2002;24:613–20.

    PubMed  Google Scholar 

  89. Evans DC, Forbes R, Thongrong, et al. Continuous versus tube feeds: does modality affect glycemic variability, tube feeding volume, caloric intake or insulin utilization? Int J Crit Illness Inj Sci. 2016;6:9–15.

    Google Scholar 

  90. Argilera-Martinez R, Barrado-Narvion J, et al. Effectiveness of continuous enteral nutrition versus intermittent enteral nutrition in intensive care patients: a systematic review. JBI Database Syst Rev Implement Rep. 2014;12:281–317.

    Google Scholar 

  91. Gunset J, Casaer MP, Van Der Berghe G. Role of ketones, ketogenic diets and intermittent fasting in ICU. Curr Opin Crit Care. 2021;27:385–9.

    Google Scholar 

  92. Goossens C, Weckx R, Derde S, et al. Adipose tissue protects against sepsis-induced muscle weakness in mice: from lipolysis to ketones. Crit Care. 2019;23:236.

    PubMed  PubMed Central  Google Scholar 

  93. De Bruyn A, Gunst J, Goossens C, et al. Effect of withholding early parenteral nutrition in PICU on ketogenesis as potential mediator of its outcome benefit. Crit Care. 2020;24:536.

    PubMed  PubMed Central  Google Scholar 

  94. Acosta-Escribano J, Fernández-Vivas M, Menendez-Mainer A, et al. Gastric versus transpyloric feeding in severe traumatic brain injury: a prospective, randomized trial. Intensive Care Med. 2010;36:1532e9.

    Google Scholar 

  95. Davies AR, Morrison SS, Bailey MJ, Bellomo R, Doig GS, et al. A multicenter, randomized controlled trial comparing early nasojejunal with nasogastric nutrition in critical illness. Crit Care Med. 2012;40:2342–8.

    PubMed  Google Scholar 

  96. Reigner J, Mercier E, Le Gouge A, Boulain T, Desachy A, Bellec E, et al. Effect of not monitoring residual gastric volume on risk of ventilator-associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: a controlled randomized trial. JAMA. 2013;209:249–56.

    Google Scholar 

  97. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis initiative. Intensive Care Med. 2017;43:304–77.

    PubMed  Google Scholar 

  98. Blaser AR, Strakopf J, Deane AM. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis. Acta Anaesthesiol Scand. 2014;58:914–22.

    PubMed  Google Scholar 

  99. Heyland DK, Ortiz A, Day AG. Incidence, risk factors, and clinical consequence of enteral feeding intolerance in the mechanically ventilated critically ill: an analysis of a multicenter, multiyear database. Crit Care Med. 2021;49:49–59.

    PubMed  Google Scholar 

  100. Sandoval AV, Ghamande S, Surani S. Critically ill patients and gut motility: are we addressing it? World J Gastrointest Pharmacol Ther. 2017;8:174–9.

    Google Scholar 

  101. Quenot JP, Thiery N, Barbar S. When should stress ulcer prophylaxis be used in the ICU? Curr Opin Crit Care. 2009;15(2):139–43.

    PubMed  Google Scholar 

  102. Krag M, Perner A, Wetterslev J, Wise MP, Borthwick M, Bendel S, et al. Prevalence and outcome of gastrointestinal bleeding and use of acid suppressants in acutely ill adult intensive care patients. Intensive Care Med. 2015;41(5):833–45.

    CAS  PubMed  Google Scholar 

  103. Huang HB, Jiang W, Du B, et al. Stress ulcer prophylaxis in intensive care unit patients receiving enteral nutrition: a systematic review and meta-analysis. Crit Care. 2018;22:20.

    PubMed  PubMed Central  Google Scholar 

  104. El-Kersh K, Jalil B, Saad M, et al. Enteral nutrition as stress ulcer prophylaxis in critically ill patients: a randomized controlled exploratory study. J Crit Care. 2018;43:108–13.

    PubMed  Google Scholar 

  105. Reintam BA, Deane AM, Fruhwald S. Diarrhoea in the critically ill. Curr Opin Crit Care. 2015;21(2):142–53.

    Google Scholar 

  106. Gramlich L, Kichien K, Pinilla J, et al. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20:843–8.

    PubMed  Google Scholar 

  107. Thibault R, Graf S, Delieuvin N, et al. Diarrhoea in the ICU: respective contribution of feeding and antibiotics. Crit Care. 2013;17:R153.

    PubMed  PubMed Central  Google Scholar 

  108. Alfonso JE, Berlana D, Boullata J. Clinical, Ergonomic and Economic outcomes with multichamber bags compared with (Hospital) Pharmacy compounded bags and multibottle systems: a systemic Literature review. J Parenter Enter Nutr. 2017;41:1162–77.

    Google Scholar 

  109. Schwarz G, Sierro C, Griffiths W. Convenience and cost-efficiency by the use of multicompartment bags for total parenteral nutrition. In: Proceedings of the XVIII ESPEN congress on clinical nutrition and metabolism. 1996.

    Google Scholar 

  110. Baras Z, Theilla M, Singer P. From compound to “ready to use” parenteral nutrition bags use in a tertiary medical center: an observational study. Clin Nutr. 2019;38(1):S270–1.

    Google Scholar 

  111. Hellerman MI, Singer P. Advances in medical nutrition therapy: parenteral nutrition. Nutrition. 2020;12:717.

    Google Scholar 

  112. Doig GS, Simpson F, Peake S, for the Early PN Investigators of the ANZICS Clinical Trials Group. Early parenteral nutrition in critically ill patients with short term relative contraindication to early enteral nutrition. A randomized controlled trail. JAMA. 2013;309:2130–8.

    CAS  PubMed  Google Scholar 

  113. Blaser AR, Starkopf J, Oudemans-van Straaten HM, et al. Early enteral nutrition in critically ill patients: ESCIM clinical practice guidelines. Intensive Care Med. 2017;43:380–98.

    Google Scholar 

  114. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19:261–8.

    PubMed  Google Scholar 

  115. Oshima T, Berger MM, Pichard C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr. 2017;36:651–62.

    PubMed  Google Scholar 

  116. Weijs PJ, Looijaard WG, Oudemans-van Straaten HM, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18:701.

    PubMed  PubMed Central  Google Scholar 

  117. Hellerman M, Sabatino A, Singer P, et al. Carbohydrate and lipid prescription, administration and oxidation in critically ill patients with acute kidney injury. A Post hoc analysis. J Ren Nutr. 2019;29:289–94.

    CAS  PubMed  Google Scholar 

  118. Case J, Khan S, Khan A, et al. Epidemiology of acute kidney injury in the intensive care. Crit Care Res Pract. 2013;2013:479730.

    PubMed  PubMed Central  Google Scholar 

  119. Fiaccadori E, Sabatino A, Cuerda C. ESPEN guidlineson clinical nutrition in hospitalized patients with acute and chronic kidney disease. Clin Nut. 2021;40:1644–68.

    CAS  Google Scholar 

  120. Kam Tao Li P, Gurdmann EA, Mehta RL, et al. Acute kidney injury: global health alert. Kidney Inter. 2013;86:372–6.

    Google Scholar 

  121. de Oliveira MC, Bufarah MNB, Balbi AL, et al. Poor agreement between indirect calorimetry and predictive formula of rest energy expenditure in pre-dialytic and dialytic chronic kidney disease. Clin Nutr ESPEN. 2018;28:136.

    PubMed  Google Scholar 

  122. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Thibault R, Seguin P, Singer P, et al. Nutrition in the COVID-19 patient in intensive care unit (ICU): a practical guidance. Crit Care. 2020;24:447.

    PubMed  PubMed Central  Google Scholar 

  125. Saez de la Fuente I, Saez de la Fuente J, Quintana Estelles MD, et al. Enteral nutrition in patients receiving mechanical ventilation in a prone position. J Parenter Enter Nutr. 2016;40:250–5.

    CAS  Google Scholar 

  126. Stoppe C, Nesterova E, Elke G. Nutritional support in patients with extracorporeal life support and ventricular assist devices. Curr Opin Crit Care. 2018;24:269–76.

    PubMed  Google Scholar 

  127. Estensen K, Shekar K, Robins E, et al. Macronutrient and micronutrient disposition in an ex vivo model of extracorporeal membrane oxygenation. Intensive Care Med Exp. 2014;2:29.

    PubMed  PubMed Central  Google Scholar 

  128. Lumlertgul N, Bear DE, Ostermann M. Clearance of micronutrients during continuous renal replacement therapy. Crit Care. 2020;24:616.

    PubMed  PubMed Central  Google Scholar 

  129. Lindberg BR, Videm V, Thiara AS, et al. Influence of the ECMO circuit on the concentration of nutritional supplements. Sci Rep. 2020;10:19275.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itzhaki, M.H., Singer, P. (2023). Intestinal Failure in Critical Care. In: Nightingale, J.M. (eds) Intestinal Failure. Springer, Cham. https://doi.org/10.1007/978-3-031-22265-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22265-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22264-1

  • Online ISBN: 978-3-031-22265-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics