Skip to main content

Mixed Use of Pontryagin’s Principle and the Hamilton-Jacobi-Bellman Equation in Infinite- and Finite-Horizon Constrained Optimal Control

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 577))

Included in the following conference series:

Abstract

This paper proposes a framework for solving a class of nonlinear infinite- and finite-horizon optimal control problems with constraints. Establishment of existence and uniqueness of solutions to the Hamilton-Jacobi-Bellman (HJB) equation plays a crucial role in verifying well-posedness of a given problem and in streamlining numerical solutions. The proposed framework revolves around infinite-horizon Bolza-type cost functions with running costs exponentially decaying in time. We show \(\varGamma \)-convergence of solutions with such cost functions to the solutions of initial constrained (in)finite-horizon problems (that is, without running costs exponentially decaying in time). Basically, we demonstrate how to approximate solutions of (in)finite-horizon constrained optimal problems using our framework. Employing a solver based on the Pontryagin’s Principle, we efficiently obtain optimal solutions for finite- and infinite-horizon problems. Efficiency of the proposed framework is demonstrated in simulation by solving a 3D path planing problem with obstacles for a full nonlinear model of an autonomous underwater vehicle (AUV).

Ivana Palunko: All authors are with LARIAT—Laboratory of intelligent and autonomous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardi M, Dolcetta, I. C.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser Basel (2008). ISBN: 978-0-8176-4755-1

    Google Scholar 

  2. Basco, V., Frankowska, H.: Hamilton-Jacobi-Bellman equations with time-measurable data and infinite horizon. Nonlinear Diff. Equat. Appl. 26(7) (2019). https://doi.org/10.1007/s00030-019-0553-y

  3. Bonnet, B.: A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems. ESAIM: COCV 25, 52 (2019). https://doi.org/10.1051/cocv/2019044

  4. Borkar, V., Budhiraja, A.: Ergodic control for constrained diffusions: characterization using HJB equations. SIAM J. Control Optim. 43(4), 1467-92 (2004). https://doi.org/10.1137/S0363012902417619

  5. Borkar, V., Budhiraja, A.: HJB equations for ergodic control problems for constrained diffusions in polyhedral domains. In: Proceedings of the 44th IEEE Conference on Decision and Control, 6668-72, Seville (2005). https://doi.org/10.1109/CDC.2005.1583233

  6. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences (2007). ISBN: 9781601330024

    Google Scholar 

  7. Busoniu L., de Bruin T., Tolić D., Kober J., Palunko I.: Reinforcement learning for control: Performance, stability, and deep approximators. Annu. Rev. Control. 46, 8–28 (2018). https://doi.org/10.1016/j.arcontrol.2018.09.005

  8. Camacho E.F., Bordons, C.: Model Predictive Control. Springer, London (2007). ISBN: 9781852336943

    Google Scholar 

  9. Campillo, F.: Optimal ergodic control of nonlinear stochastic systems. In: Kree, P., Wedig, W. (eds.) Probabilistic Methods in Applied Physics, vol. 451, pp. 239–69. Springer, Berlin (1995). https://doi.org/10.1007/3-540-60214-3-59

  10. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, Birkhäuser Basel (1993). ISBN: 978-1-4612-0327-8

    Google Scholar 

  11. Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model 22, 180-215 (2011). https://doi.org/10.1007/s10598-011-9096-8

  12. Gorges, D.: Relations between model predictive control and reinforcement learning. IFAC-PapersOnLine 50(1), 4920–4928 (2017). https://doi.org/10.1016/j.ifacol.2017.08.747

  13. Liberzon, D.; Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University (2012). ISBN: 9780691151878

    Google Scholar 

  14. Picarelli, A.: On Some Stochastic Control Problems with State Constraints. Mathematics [math]. ENSTA ParisTech (2015). English

    Google Scholar 

  15. Redfern, D. A., Goh, C. J.: Feedback control of state constrained optimal control problems. In: Doležal J., Fidler J. (eds.) System Modelling and Optimization. IFIP - The International Federation for Information Processing. Springer, Boston (1996). https://doi.org/10.1007/978-0-387-34897-1-53

  16. Ross, I.M.: A Primer on Pontryagin’s Principle in Optimal Control, Collegiate Publishers (2015). ISBN: 978-0984357116

    Google Scholar 

  17. Ross, I. M.: Enhancement to the DIDO optimal control toolbox, arXiv preprint (2020). https://doi.org/10.48550/arXiv.2004.13112

  18. Ross, I.M., Gong, Q., Fahroo, F., Kang, W.: Practical Stabilization Through Real-Time Optimal Control. In: Proceedings of American Control Conference, pp.304–309, Minneapolis (2006). https://doi.org/10.1109/ACC.2006.1655372

  19. Tauchnitz, N.: Pontryagin’s Maximum Principle for Infinite Horizon Optimal Control Problems with Bounded Processes and with State Constraints (2020). https://doi.org/10.48550/arXiv.2007.09692

  20. Valentine, F.A.: The Problem of Lagrange with Differential Inequalities as Added Side Conditions. Trace and Emergence of Nonlinear Programming, pp. 313–357. (2014). https://doi.org/10.1007/978-3-0348-0439-4-16

Download references

Acknowledgments

This work is supported by project SeaClear, European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Weston .

Editor information

Editors and Affiliations

Appendix

Appendix

In order to make this paper as self-contained as possible and for the reader’s convenience, we establish some additional notation needed for this section. Let \(B_{r}(x)\) be the closed ball in \(\mathbb {R}^{k}\) of radius \(r > 0\) centered at \(x\in \mathbb {R}^{k}\). For a nonempty set \(C \subset \mathbb {R}^{k}\), we denote its convex hull by co(C).The negative polar cone of C is defined as \(C^{-} := \{p \in \mathbb {R}^{k} : \langle p,c\rangle \le 0 \text { for all } c\in C\}\). Denote the set distance from \(x\in \mathbb {R}^{k}\) to C by \(d_{C}(x) := \inf \{|x-y| :\; y\in C\}\).

For a nonempty set \(C \subset \mathbb {R}^{k}\), collection of nonempty subsets \(\{C_{w}\}_{w\in C_{2}}\), and \(w_{0}\in C_{2}\), let

$$\text {Lim}\sup \limits _{w\rightarrow w_{0}}C_{w} = \{v\in \mathbb {R}^{k}:\; \liminf \limits _{w\rightarrow w_{0}}\;d_{C_{w}}(v)=0\}$$

and

$$\text {Lim} \inf \limits _{w\rightarrow w_{0}}C_{w} = \{v\in \mathbb {R}^{k}:\; \limsup \limits _{w\rightarrow w_{0}}\;d_{C_{w}}(v)=0\}.$$

For \(x \in \overline{C} \) define \(T_{C}(x) := \{v\in \mathbb {R}^{k}: \liminf \limits _{h\rightarrow 0^{+}}\;d_{A}(x+hv)/h = 0 \}\) and \(N_{C}(x) := \text {Lim} \sup \limits _{y\rightarrow C^{x}}T_{C}(y)^{-}\). Finally, denote the epigraph of a function \(\varphi \) as epi \(\varphi \).

Below we state the necessary assumptions and proposition required for the proof of Theorem 1.

  1. A1

    For all \(x \in \mathbb {R}^{n}\), the mappings \(\tilde{f}(\cdot , x, \cdot )\) and \(\tilde{F}(\cdot , x, \cdot )\) are Lebesgue-Borel measurable and there exists \(\phi \in L^{1}([0,\infty );\mathbb {R})\) such that \(\tilde{F}(t,x,u)\ge \phi (t)\) for a.e. \(t \ge 0\) and all \((x,u) \in \mathbb {R}^{n}\times \mathbb {R}^{m}\).

  2. A2

    There exists a function \(c \in L^{1}_{loc}([0,\infty ); \mathbb {R}^{+})\) such that for a.e. \(t \ge 0\) and for all \(x \in \mathbb {R}^{n},\; u \in U(t)\)

    $$|\tilde{f}(t,x,u)| + |\tilde{F}(t,x,u)| \le c(t)(1+|x|).$$
  3. A3

    For a.e. \(t \ge 0\) and all \(x \in \mathbb {R}^{n}\), the set-valued map

    $$y \rightarrow \{(\tilde{f}(t,y,u), \tilde{F}(t,y,u)): u\in U(t)\}$$

    is continuous with closed images, and the set

    $$\{(\tilde{f}(t,x,u), \tilde{F}(t,x,u)+r): u \in U(t),\; r\ge 0 \}$$

    is convex.

  4. A4

    There exists a function \(k \in L^{1}_{loc}([0,\infty ); \mathbb {R}^{+})\) such that for a.e. \(t\ge 0\) and for all \(x,y\in \mathbb {R}^{n},\; u \in U(t)\): \(|\tilde{f}(t,x,u) - \tilde{f}(t,y,u)| + |\tilde{F}(t,x,u)-\tilde{F}(t,y,u)| \le k(t)|x-y|.\)

  5. A5

    \(k\in \mathscr {L}_{loc}\) and \(\limsup _{t\rightarrow \infty } \frac{1}{t}\int ^{t}_{0}(c(s)+k(s))ds < \infty .\)

  6. A6

    There exists a function \(q\in \mathscr {L}_{loc}\) such that for a.e. \(t \ge 0\)

    $$\sup \limits _{u\in U(t)}(|\tilde{f}(t,x,u)|+|\tilde{F}(t,x,u)|) \le q(t),\; \text {for all } x\in \partial C$$

    where \(C \subset \mathbb {R}^{n}\) is closed.

  7. A7

    Let \(V: [0,\infty )\times C \rightarrow \mathbb {R}\cup \{\pm \infty \}\) be the value function of (8)–(9). Then assume Dom \(V \ne \varnothing \) and there exist \(T > 0\) and \(\psi \in L^{1}([T,\infty ); \mathbb {R}^{+})\) such that for all \((t_{0}, x_{0}) \in \text {Dom }V \cap ([T,\infty )\times \mathbb {R}^{n})\) and any feasible trajectory-control pair \((x(\cdot ), u(\cdot ))\) on \([t_{0}, \infty ),\) with \(x(t_{0}) = x_{0},\)

    $$|\tilde{F}(t, x(t),u(t))| \le \psi (t)\text { for a.e. } t\ge t_{0}.$$
  8. A8

    There exist \(\eta ,\; r > 0\) and \(M \ge 0\) such that for a.e. \(t > 0\) and any \(y\in \partial C + \eta B_{1}({\textbf {0}}),\) and any \(v \in \tilde{f}(t,y,U(t)),\) with \(\inf \limits _{n\in N^{1}_{y,\eta }}\langle n,v \rangle \le 0,\) we can find \(w \in \tilde{f}(t,y,U(t))\cap B_{M}(v)\) satisfying

    $$\inf _{n\in N^{1}_{y,\eta }}\{\langle n,w\rangle ,\; \langle n, w-v \rangle \}\ge r,$$

    where \(N^{1}_{y,\eta } := \{n \in \partial B_{1}({\textbf {0}}): n \in \overline{co}N_{C}(x),\; x \in \partial C\cap B_{\eta }(y)\}.\)

Proposition 2

(Theorem 3.3, [2]) Let \(W:[0,\infty ) \times C \rightarrow \mathbb {R}\cup \{+\infty \}\) be a lower semicontinuous function such that \(\text {Dom }V(t,\cdot )\subset \text {Dom }W(t,\cdot ) \ne \emptyset \) for all large \(t > 0\) and

$$\begin{aligned} \lim _{t\rightarrow \infty }\sup \limits _{y\in \text {Dom }W(t,\cdot )}|W(t,y)| = 0. \end{aligned}$$
(25)

Then the following statements are equivalent:

  1. 1.

    W = V;

  2. 2.

    W is a weak (or viscosity) solution of HJB equation on \((0,\infty )\times C\) and \(t \rightarrow \text {epi }W(t,\cdot )\) is locally absolutely continuous.

In addition, V is the unique weak solution satisfying (25) with locally absolutely continuous \(t \rightarrow \text {epi }V(t,\cdot )\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weston, J., Tolić, D., Palunko, I. (2023). Mixed Use of Pontryagin’s Principle and the Hamilton-Jacobi-Bellman Equation in Infinite- and Finite-Horizon Constrained Optimal Control. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_12

Download citation

Publish with us

Policies and ethics