Skip to main content

Causality Discovery Based on Combined Causes and Multiple Causes in Drug-Drug Interaction

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Abstract

We consider the problem of automatically detecting drug-drug interactions, i.e., the occurrence of an adverse reaction caused by the co-administration of two or more drugs, from reports of suspected cases. This is an important problem because of the health implications that correctly identifying drug-drug interactions has, and because the automatic detection of such cases would enable analysis and monitoring at scale. Current automated methods are based on associations and correlation relationships between datapoints, and thus fail to identify casual relationships. In this context, we propose a novel approach that specifically identifies the combined causes and multiple causes of drug-drug interactions, along with the actual direction of the casual relation. The method is empirically validated on a real-world adverse effect dataset and contrasted against current methods for automatic drug-drug interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MedicinesComplete published in Pharmaceutical Press and the Royal Pharmaceutical Society:https://www.medicinescomplete.com/mc/alerts/current/drug-interactions.htm.

  2. 2.

    Data sources from Micromedex, Multum and Wolters Kluwer database:https://www.drugs.com/drug_interactions.php.

References

  1. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and Markov blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation. J. Mach. Learn. Res. 11(Jan), 171–234 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and Markov blanket induction for causal discovery and feature selection for classification part ii: analysis and extensions. J. Mach. Learn. Res. 11(Jan), 235–284 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bate, A., Evans, S.: Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol. Drug Saf. 18(6), 427–436 (2009)

    Article  Google Scholar 

  4. Bühlmann, P., Kalisch, M., Maathuis, M.H.: Variable selection in high-dimensional linear models: partially faithful distributions and the pc-simple algorithm. Biometrika 97(2), 261–278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, R.: Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports. Artif. Intell. Med. 76, 7–15 (2017)

    Article  Google Scholar 

  6. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cooper, G.F.: A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Min. Knowl. Disc. 1(2), 203–224 (1997). https://doi.org/10.1023/A:1009787925236

    Article  Google Scholar 

  8. Elath, H., Dixit, R.R., Schumaker, R.P., Veronin, M.A.: Predicting deadly drug combinations through a machine learning approach (2018)

    Google Scholar 

  9. Freedman, D.: From association to causation: some remarks on the history of statistics. J. Soc. Fr. Stat. 140(5), 5–32 (1999)

    MATH  Google Scholar 

  10. Hansen, M.L., et al.: Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch. Intern. Med. 170(16), 1433–1441 (2010)

    Article  Google Scholar 

  11. Harpaz, R., Chase, H.S., Friedman, C.: Mining multi-item drug adverse effect associations in spontaneous reporting systems. In: BMC Bioinformatics, vol. 11, pp. 1–8. BioMed Central (2010)

    Google Scholar 

  12. Harpaz, R., Perez, H., Chase, H.S., Rabadan, R., Hripcsak, G., Friedman, C.: Biclustering of adverse drug events in the FDA’s spontaneous reporting system. Clin. Pharmacol. Ther. 89(2), 243–250 (2011)

    Article  Google Scholar 

  13. Ibrahim, H., Saad, A., Abdo, A., Eldin, A.S.: Mining association patterns of drug-interactions using post marketing FDA’s spontaneous reporting data. J. Biomed. Inform. 60, 294–308 (2016)

    Article  Google Scholar 

  14. Jin, Z., Li, J., Liu, L., Le, T.D., Sun, B., Wang, R.: Discovery of causal rules using partial association. In: Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 309–318. IEEE (2012)

    Google Scholar 

  15. Kovesdy, C.P., Kalantar-Zadeh, K.: Observational studies versus randomized controlled trials: avenues to causal inference in nephrology. Adv. Chronic Kidney Dis. 19(1), 11–18 (2012)

    Article  Google Scholar 

  16. Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15), 1200–1205 (1998)

    Article  Google Scholar 

  17. Li, J., Le, T.D., Liu, L., Liu, J., Jin, Z., Sun, B.: Mining causal association rules. In: Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, pp. 114–123. IEEE (2013)

    Google Scholar 

  18. Liu, M., et al.: Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning. J. Am. Med. Inform. Assoc. 21(2), 245–251 (2014)

    Article  Google Scholar 

  19. Ma, S., Li, J., Liu, L., Le, T.D.: Mining combined causes in large data sets. Knowl.-Based Syst. 92, 104–111 (2016)

    Article  Google Scholar 

  20. McHugh, M.L.: The chi-square test of independence. Biochemia medica: Biochemia medica 23(2), 143–149 (2013)

    Article  Google Scholar 

  21. Norén, G.N., Orre, R., Bate, A., Edwards, I.R.: Duplicate detection in adverse drug reaction surveillance. Data Min. Knowl. Disc. 14(3), 305–328 (2007). https://doi.org/10.1007/s10618-006-0052-8

    Article  MathSciNet  Google Scholar 

  22. Palleria, C.: Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. 18(7), 601 (2013)

    Google Scholar 

  23. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  24. Qin, X., Kakar, T., Wunnava, S., Rundensteiner, E.A., Cao, L.: Maras: signaling multi-drug adverse reactions. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1615–1623. ACM (2017)

    Google Scholar 

  25. Quinn, D., Day, R.: Drug interactions of clinical importance. Drug Saf. 12(6), 393–452 (1995)

    Article  Google Scholar 

  26. Spirtes, P., et al.: Causation, Prediction and Search. MIT press, Cambridge (2000)

    MATH  Google Scholar 

  27. Subpaiboonkit, S., Li, X., Zhao, X., Scells, H., Zuccon, G.: Causality discovery with domain knowledge for drug-drug interactions discovery. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 632–647. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_46

    Chapter  Google Scholar 

  28. Van Puijenbroek, E.P., Egberts, A.C., Meyboom, R.H., Leufkens, H.G.: Signalling possible drug-drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole. Br. J. Clin. Pharmacol. 47(6), 689–693 (1999)

    Article  Google Scholar 

  29. Ventola, C.L.: Big data and pharmacovigilance: data mining for adverse drug events and interactions. Pharm. Ther. 43(6), 340 (2018)

    Google Scholar 

  30. Waldmann, M.R., Martignon, L.: A Bayesian network model of causal learning. In: Proceedings of the twentieth annual conference of the Cognitive Science Society, pp. 1102–1107 (1998)

    Google Scholar 

  31. Xiang, Y., et al.: Efficiently mining adverse event reporting system for multiple drug interactions. AMIA Summits Transl. Sci. Proc. 2014, 120 (2014)

    Google Scholar 

  32. Zhan, C., Roughead, E., Liu, L., Pratt, N., Li, J.: Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data. J. Biomed. Inform. 112, 103603 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitthichoke Subpaiboonkit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subpaiboonkit, S., Li, X., Zhao, X., Zuccon, G. (2022). Causality Discovery Based on Combined Causes and Multiple Causes in Drug-Drug Interaction. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics