Skip to main content

Predictive Model Building for Pain Intensity Using Machine Learning Approach

  • Conference paper
  • First Online:
International Conference on Cyber Security, Privacy and Networking (ICSPN 2022) (ICSPN 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 599))

Included in the following conference series:

  • 312 Accesses

Abstract

When the patient’s body is compromised in any way, they will likely be in a lot of pain. If the caregiver is aware of the level of pain that the patient is experiencing, they will be better able to formulate the most appropriate treatment plan and provide the most appropriate medication. The visual analogue scale, often known as a VAS, is the approach that is used the most frequently to evaluate pain, and it is entirely dependent on patient reporting. Due to the fact that this kind of scale is ineffective when dealing with traumatic experiences or infants, it became necessary to devise a mechanism that could automatically recognize the severity of pain. On a dataset of multi-biopotential signals corresponding to varying degrees of discomfort, we evaluated the performance of the random forest and support vector machine classifiers.

Supported by Zarqa University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Qerem, A.: An efficient machine-learning model based on data augmentation for pain intensity recognition. Egypt. Inform. J. 21(4), 241–257 (2020)

    Article  Google Scholar 

  2. Almomani, A., et al.: Phishing website detection with semantic features based on machine learning classifiers: a comparative study. Int. J. Semant. Web Inf. Syst. (IJSWIS) 18(1), 1–24 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bhardwaj, A., Kaushik, K.: Predictive analytics-based cybersecurity framework for cloud infrastructure. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–20 (2022)

    Google Scholar 

  4. Bodian, C.A., Freedman, G., Hossain, S., Eisenkraft, J.B., Beilin, Y.: The visual analog scale for pain: clinical significance in postoperative patients. J. Am. Soc. Anesthesiol. 95(6), 1356–1361 (2001)

    Article  Google Scholar 

  5. Chu, Y., Zhao, X., Han, J., Su, Y.: Physiological signal-based method for measurement of pain intensity. Front. Neurosci. 11, 279 (2017)

    Article  Google Scholar 

  6. Gruss, S., et al.: Pain intensity recognition rates via biopotential feature patterns with support vector machines. PLoS ONE 10(10), e0140330 (2015)

    Google Scholar 

  7. Gupta, B.B., Li, K.C., Leung, V.C., Psannis, K.E., Yamaguchi, S., et al.: Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system. IEEE/CAA J. Autom. Sin. 8(12), 1877–1890 (2021)

    Article  Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Google Scholar 

  9. Jiang, M., et al.: Acute pain intensity monitoring with the classification of multiple physiological parameters. J. Clin. Monit. Comput. 33(3), 493–507 (2019)

    Google Scholar 

  10. Kumar, K.H., Elavarasi, P.: Definition of pain and classification of pain disorders. J. Adv. Clin. Res. Insights 3(3), 87–90 (2016)

    Article  Google Scholar 

  11. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta—a system for feature selection. Fundam. Inform. 101(4), 271–285 (2010)

    Article  MathSciNet  Google Scholar 

  12. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Google Scholar 

  13. Mostert, W., Malan, K., Engelbrecht, A.: Filter versus wrapper feature selection based on problem landscape features. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1489–1496 (2018)

    Google Scholar 

  14. Rudnicki, W.R., Kierczak, M., Koronacki, J., Komorowski, J.: A statistical method for determining importance of variables in an information system. In: International Conference on Rough Sets and Current Trends in Computing, pp. 557–566. Springer (2006)

    Google Scholar 

  15. Vijayakumar, P., Rajkumar, S., et al.: Deep reinforcement learning-based pedestrian and independent vehicle safety fortification using intelligent perception. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 14(1), 1–33 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Deanship of Research and Graduate Studies at Zarqa University/Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Al-Qerem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Qerem, A., Alarmouty, B., Nabot, A., Al-Qerem, M. (2023). Predictive Model Building for Pain Intensity Using Machine Learning Approach. In: Nedjah, N., MartĂ­nez PĂ©rez, G., Gupta, B.B. (eds) International Conference on Cyber Security, Privacy and Networking (ICSPN 2022). ICSPN 2021. Lecture Notes in Networks and Systems, vol 599. Springer, Cham. https://doi.org/10.1007/978-3-031-22018-0_3

Download citation

Publish with us

Policies and ethics