Skip to main content

Twenty-Seven Years of Field Studies on Dengue and Aedes aegypti in Latin America

  • Chapter
  • First Online:
History of Arbovirology: Memories from the Field

Abstract

This chapter provides a chronology and partial memoir of the career of Amy C. Morrison over the previous 27 years conducting research on dengue virus transmission dynamics and its vector Aedes aegypti in Puerto Rico and Thailand and 22 years in Peruvian Amazon in Iquitos, Peru. She describes how the influences of prominent arbovirologists and medical entomologists as well as good timing and luck led her to focus on Ae. aegypti. For young scientists, it is an example of how networking and prior experiences lead to new opportunities. After a PhD on the bionomics of the sand fly vector of American visceral leishmaniasis at the Yale Arbovirus Unit, she moved to the Centers for Disease Control and Prevention Dengue Branch for her first postdoc, where she published “Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992,” the first use of spatial statistical analysis on the spatial distribution of dengue cases and met Tom Scott with whom she would work with for 20 years in Iquitos. This study and approach would become a key component of the first NIH grant she and Tom wrote that initiated the Iquitos Project Dengue Research Program and collaboration with the US Navy. From 1998 to 2019, Dr. Morrison has conducted eight large-scale longitudinal cohort studies of which four were vector control intervention trials measuring the impact of the intervention on virus transmission. Rather than focusing on all the scientific contributions of this productive program, she describes some of the day-to-day activities of the Aedes aegypti survey team, including some personal stories, which remained intact until 2019 when they completed their work on a cluster randomized control trial (cRCT) determining the protective efficacy of a spatial repellent product against Aedes-borne viral disease, the largest and most complex project executed by the team. She describes many of the challenges associated with working in the field including the fact that all her trials have had to account for emergency vector control activities carried out by government programs. The program has been able to develop a strong relationship with their government counterparts to coordinate research and control activities. She describes the integration of qualitative research and its value to the overall research program. She concludes with a description of her role as an external advisor on dengue and Aedes aegypti and some of the key lessons learned from many years of field work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander N, Lenhart AE, Romero-Vivas CM et al (2006) Sample sizes for identifying the key types of container occupied by dengue-vector pupae: the use of entropy in analyses of compositional data. Ann Trop Med Parasitol 100(Suppl 1):S5–S16

    Article  PubMed  Google Scholar 

  • Andersson N, Nava-Aguilera E, Arostegui J et al (2015) Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351:h3267

    Article  PubMed  PubMed Central  Google Scholar 

  • Baltzegar J, Vella M, Gunning C et al (2021) Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in Aedes aegypti. Evol Appl 14(8). Wiley:2098–2113

    Google Scholar 

  • Bangs MJ, Barr AR, Cope SE, et al (1986) Assessment of adult mosquito populations in a freshwater marsh in southern California by various trapping methods. In Proceedings and papers of the annual conference of the California Mosquito and Vector Control Association (USA), vol 54, pp 113–116

    Google Scholar 

  • Barr AR, Morrison AC, Guptavanij P et al (1986) Parity rates of mosquitoes collected in the San Joaquin marsh. In Proceedings and papers of the annual conference of the California Mosquito and Vector Control Association (USA), vol 54, pp 117–118

    Google Scholar 

  • Bautista CT, Chan AST, Ryan JR et al (2006) Epidemiology and spatial analysis of malaria in the Northern Peruvian Amazon. Am J Trop Med Hyg 75(6). American Society of Tropical Medicine and Hygiene:1216–1222

    Google Scholar 

  • Carrasco J, Morrison A, Ponce C (1998) Behaviour of Lutzomyia longipalpis in an area of southern Honduras endemic for visceral/atypical cutaneous leishmaniasis. Ann Trop Med Parasitol 92(8):869–876

    Article  CAS  PubMed  Google Scholar 

  • Chaves LF, Morrison AC, Kitron UD et al (2012) Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob Chang Biol 18(2). Wiley: 457–468

    Google Scholar 

  • Chaves LF, Scott TW, Morrison AC et al (2014) Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments. Acta Trop 129:15–24

    Article  PubMed  Google Scholar 

  • Cope SE, Barr AR, Bangs MJ et al (1986) Human bait collections of mosquitoes in a southern California freshwater marsh. In Proceedings and papers of the annual conference of the California Mosquito and Vector Control Association (USA) 54. agris.fao.org: 110–112

  • Edman JD, Scott TW, Costero A et al (1998) Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites. J Med Entomol 35(4):578–583

    Article  CAS  PubMed  Google Scholar 

  • Elson WH, Riley-Powell AR, Morrison AC et al (2020) Measuring health related quality of life for dengue patients in Iquitos, Peru. PLoS Negl Trop Dis 14(7). Public Library of Science (PLoS):e0008477

    Google Scholar 

  • Ferro C, Morrison AC, Torres M et al (1995a) Age structure, blood-feeding behavior, and Leishmania chagasi infection in Lutzomyia longipalpis (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 32(5):618–629

    Article  CAS  PubMed  Google Scholar 

  • Ferro C, Morrison AC, Torres M et al (1995b) Species composition and relative abundance of sand flies of the genus Lutzomyia (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 32(4):527–537

    Article  CAS  PubMed  Google Scholar 

  • Ferro C, Pardo R, Torres M et al (1997) Larval microhabitats of Lutzomyia longipalpis (Diptera: Psychodidae) in an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 34(6):719–728

    Article  CAS  PubMed  Google Scholar 

  • Focks DA, Haile DG, Daniels E et al (1993a) Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30(6):1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Focks DA, Haile DG, Daniels E et al (1993b) Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J Med Entomol 30(6):1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Focks DA, Daniels E, Haile DG et al (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53(5):489–506

    Article  CAS  PubMed  Google Scholar 

  • Getis A, Morrison AC, Gray K et al (2003) Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69(5):494–505

    Article  PubMed  Google Scholar 

  • Gunning CE, Okamoto K, Astete H et al (2018) Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru. PLoS Negl Trop Dis 12(4):e0006378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JW, Turell MJ, Sardelis MR et al (2004) Seasonal distribution, biology, and human attraction patterns of culicine mosquitoes (Diptera: Culicidae) in a forest near Puerto Almendras, Iquitos, Peru. J Med Entomol 41(3). Oxford University Press (OUP):349–360

    Google Scholar 

  • Lenhart A, Morrison AC, Paz-Soldan VA et al (2020) The impact of insecticide treated curtains on dengue virus transmission: a cluster randomized trial in Iquitos, Peru. PLoS Negl Trop Dis 14(4):e0008097

    Article  PubMed  PubMed Central  Google Scholar 

  • Long KC, Sulca J, Bazan I et al (2019) Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 13(2):e0007116

    Article  PubMed  PubMed Central  Google Scholar 

  • Montoya Lerma J (2016) Tributo a María Cristina Ferro (q.e.p.d.). Rev Colomb Entomol 42(1). Universidad del Valle:97

    Google Scholar 

  • Morrison AC, Ferro C, Morales A et al (1993a) Dispersal of the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 30(2):427–435

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Ferro C, Tesh RB (1993b) Host preferences of the sand fly Lutzomyia longipalpis at an endemic focus of American visceral leishmaniasis in Colombia. Am J Trop Med Hyg 49(1):68–75

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Ferro C, Pardo R, Torres M, Wilson ML et al (1995a) Nocturnal activity patterns of Lutzomyia longipalpis (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 32(5):605–617

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Ferro C, Pardo R, Torres M, Devlin B et al (1995b) Seasonal abundance of Lutzomyia longipalpis (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol 32(4):538–548

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Getis A, Santiago M et al (1998) Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 58(3):287–298

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Costero A, Edman JD et al (1999) Increased fecundity of Aedes aegypti fed human blood before release in a mark-recapture study in Puerto Rico. J Am Mosq Control Assoc 15(2):98–104

    CAS  PubMed  Google Scholar 

  • Morrison AC, Astete H, Chapilliquen F et al (2004a) Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol 41(3):502–510

    Article  CAS  PubMed  Google Scholar 

  • Morrison AC, Gray K, Getis A et al (2004b) Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41(6):1123–1142

    Article  PubMed  Google Scholar 

  • Morrison AC, Sihuincha M, Stancil JD et al (2006) Aedes aegypti (Diptera: Culicidae) production from non-residential sites in the Amazonian city of Iquitos, Peru. Ann Trop Med Parasitol 100(Suppl 1):S73–S86

    Article  PubMed  Google Scholar 

  • Morrison AC, Schwarz J, Long KC et al (2019) Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 13(2):e0007090

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison AC, Reiner RC Jr, Elson WH et al (2022) Efficacy of a spatial repellent for control of Aedes-borne virus transmission: a cluster randomized trial in Iquitos, Peru. Proc Natl Acad Sci U S A 119(26):e2118283119

    Google Scholar 

  • Morrison AC, Schwarz J, Mckenney JL et al (2021b) Potential for community based surveillance of febrile diseases: feasibility of self-administered rapid diagnostic tests in Iquitos, Peru and Phnom Penh, Cambodia. PLoS Negl Trop Dis 15(4):e0009307

    Article  PubMed  PubMed Central  Google Scholar 

  • Munstermann LE, Morrison AC, Ferro C et al (1998) Genetic structure of local populations of Lutzomyia longipalpis (Diptera: Psychodidae) in Central Colombia. J Med Entomol 35(1):82–89

    Article  CAS  PubMed  Google Scholar 

  • Pardo RH, Torres M, Morrison AC et al (1996) Effect of fluorescent powder on Lutzomyia longipalpis (Diptera: Psychodidae) and a simple device for marking sand flies. J Am Mosq Control Assoc 12(2 Pt 1):235–242

    CAS  PubMed  Google Scholar 

  • Paz-Soldan VA, Stoddard ST, Vazquez-Prokopec G et al (2010) Assessing and maximizing the acceptability of global positioning system device use for studying the role of human movement in dengue virus transmission in Iquitos, Peru. Am J Trop Med Hyg 82(4):723–730

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz-Soldan VA, Reiner RC Jr, Morrison AC et al (2014) Strengths and weaknesses of Global Positioning System (GPS) data-loggers and semi-structured interviews for capturing fine-scale human mobility: findings from Iquitos, Peru. PLoS Negl Trop Dis 8(6):e2888

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz-Soldan VA, Yukich J, Soonthorndhada A et al (2016) Design and testing of novel lethal ovitrap to reduce populations of Aedes mosquitoes: community-based participatory research between industry, academia and communities in Peru and Thailand. PLoS One 11(8):e0160386

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz-Soldan VA, Morrison AC, Sopheab H et al (2019) Potential use of community-based rapid diagnostic tests for febrile illnesses: formative research in Peru and Cambodia. PLoS Negl Trop Dis 13(10):e0007773

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins TA, Garcia AJ, Paz-Soldan VA et al (2014) Theory and data for simulating fine-scale human movement in an urban environment. J R Soc Interface/R Soc 11(99):20140642. https://doi.org/10.1098/rsif.2014.0642

    Article  Google Scholar 

  • Perkins TA, Paz-Soldan VA, Stoddard ST et al (2016) Calling in sick: impacts of fever on intra-urban human mobility. Proc Biol Sci/R Soc 283(1834). https://doi.org/10.1098/rspb.2016.0390

  • Perkins TA, Reiner RC Jr, España G et al (2019) An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Comput Biol 15(3):e1006710

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponce C, Ponce E, Morrison A et al (1991) Leishmania donovani chagasi: new clinical variant of cutaneous leishmaniasis in Honduras. Lancet 337(8733):67–70

    Article  CAS  PubMed  Google Scholar 

  • Reiner RC Jr, Stoddard ST, Vazquez-Prokopec GM et al (2019) Estimating the impact of city-wide Aedes aegypti population control: an observational study in Iquitos, Peru. PLoS Negl Trop Dis 13(5):e0007255

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaber KL, Paz-Soldan VA, Morrison AC et al (2019) Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Negl Trop Dis 13(9):e0007756

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaber KL, Perkins TA, Lloyd AL et al (2021) Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Comput Biol 17(1). Public Library of Science (PLoS):e1008627

    Google Scholar 

  • Scott TW, Morrison AC (2003) Aedes aegypti density and the risk of dengue virus transmission. In: Takken W, Scott Thomas W (eds) Ecological aspects for application of genetically modified mosquitoes. Kluwer Academic Publishers, Dordrecht/Boston, pp 187–206

    Google Scholar 

  • Scott TW, Morrison AC (2008) Longitudinal field studies will guide a paradigm shift in dengue prevention. In: Lemon SM, Institute of Medicine (U.S.). Forum on Microbial Threats (eds) Vector-borne diseases: understanding the environmental, human health, and ecological connections: workshop summary. National Academies Press, Washington, DC, pp 32–149

    Google Scholar 

  • Scott TW, Morrison AC (2010) Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr Top Microbiol Immunol 338:115–128

    PubMed  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC et al (2000a) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37(1):89–101

    Article  CAS  PubMed  Google Scholar 

  • Scott TW, Morrison AC, Lorenz LH et al (2000b) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37(1):77–88

    Article  CAS  PubMed  Google Scholar 

  • Stoddard ST, Forshey BM, Morrison AC et al (2013) House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A 110(3):994–999

    Article  CAS  PubMed  Google Scholar 

  • Stoddard ST, Wearing HJ, Reiner RC Jr et al (2014) Long-term and seasonal dynamics of dengue in Iquitos, Peru. PLoS Negl Trop Dis 8(7):e3003

    Article  PubMed  PubMed Central  Google Scholar 

  • Ten Bosch QA, Clapham HE, Lambrechts L et al (2018) Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog 14(5):e1006965

    Article  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Schoeler G, Phillippy AM et al (2016) Identification and genomic analysis of a novel Group C orthobunyavirus isolated from a mosquito captured near Iquitos, Peru. PLoS Negl Trop Dis 10(4):e0004440

    Article  PubMed  PubMed Central  Google Scholar 

  • Tun-Lin W, Lenhart A, Nam VS et al (2009) Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: a multi-country non-inferiority cluster randomized trial. Trop Med Int Health TM & IH 14(9):1143–1153

    Article  CAS  Google Scholar 

  • Turell MJ, O’guinn ML, Jones JW et al (2005) Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon basin region of Peru. J Med Entomol 42(5). Oxford University Press (OUP):891–898

    Google Scholar 

  • Turell MJ, Sardelis MR, Jones JW et al (2008) Seasonal distribution, biology, and human attraction patterns of mosquitoes (Diptera: Culicidae) in a rural village and adjacent forested site near Iquitos, Peru. J Med Entomol 45(6):1165–1172

    Article  PubMed  Google Scholar 

  • Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, Supriyati E, Wardana DS, Meitika Y, Ernesia I, Nurhayati I, Prabowo E, Andari B, Green BR, Hodgson L, Cutcher Z, Rancès E, Ryan PA, O’Neill SL, Dufault SM, Tanamas SK, Jewell NP, Anders KL, Simmons CP (2021) Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384(23). Massachusetts Medical Society: 2177–2186

    Google Scholar 

  • Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V et al (2009) Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Int J Health Geogr 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Prokopec GM, Bisanzio D, Stoddard ST et al (2013) Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS One 8(4):e58802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morrison, A.C. (2023). Twenty-Seven Years of Field Studies on Dengue and Aedes aegypti in Latin America. In: Vasilakis, N., Kramer, L.D. (eds) History of Arbovirology: Memories from the Field. Springer, Cham. https://doi.org/10.1007/978-3-031-21999-3_10

Download citation

Publish with us

Policies and ethics