Skip to main content

Passive Radar: A Challenge Where Resourcefulness Is the Key to Success

  • Chapter
  • First Online:
Women in Telecommunications

Part of the book series: Women in Engineering and Science ((WES))

  • 202 Accesses

Abstract

The operating principle of passive radar is rooted in the past century, but its operative technology has been rapidly developing over the last 20 years, with applications that nowadays range from aerial and maritime surveillance to imaging and from home automation to e-health. Despite the variety of applications that this technology enables, the basic idea remains the same: the appropriate exploitation and reuse of already available transmissions for an increased ability to acquire information from a given scenario. This chapter will cover the basics of passive radar systems, starting with their operating principle and illustrating their advantages and limitations, providing the reader with the tools to understand their potential and more advanced applications. Next, it will discuss the latest scientific advances reported in the literature and the most innovative fields of application, as well as the most promising prospects for the future of this challenging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baker CJ, Griffiths HD, Papoutsis I (2005) Passive coherent location radar systems. Part 2: waveform properties. IEE Proc Radar Sonar Navig 152:160–168

    Article  Google Scholar 

  • Berger CR, Demissie B, Heckenbach J, Willett P, Zhou S (2010) Signal processing for passive radar using OFDM waveforms. IEEE J Sel Top Sign Proces 4(1):226–238

    Article  Google Scholar 

  • Blasone GP, Colone F, Lombardo P, Wojaczek P, Cristallini D (2020) Passive radar DPCA schemes with adaptive channel calibration. IEEE Trans Aerosp Electron Syst 56(5):4014–4034

    Article  Google Scholar 

  • Blasone GP, Colone F, Lombardo P, Wojaczek P, Cristallini D (2021) Passive radar STAP detection and DoA estimation under antenna calibration errors. IEEE Trans Aerosp Electron Syst 57(5):2725–2742

    Article  Google Scholar 

  • Brown J, Woodbridge K, Griffiths H, Stove A, Watts S (2012) Passive bistatic radar experiments from an airborne platform. IEEE Aerosp Electron Syst Mag 27:50–55

    Article  Google Scholar 

  • Cabrera O, Bongioanni C, Filippini F, Sarabakha O, Colone F, Lombardo P (2020) Detecting drones and human beings with DVB-S based COTS passive radar for short-range surveillance. In: 2020 IEEE international radar conference, Washington DC

    Google Scholar 

  • Chen Q, Liu Y, Tan B, Woodbridge K, Chetty K (2020) Respiration and activity detection based on passive radio sensing in home environments. IEEE Access 8:12426–12437

    Article  Google Scholar 

  • Chetty K, Smith GE, Woodbridge K (2012) Through-the-wall sensing of personnel using passive bistatic WiFi radar at standoff distances. IEEE Trans Geosci Remote Sens 50(4):1218–1226

    Article  Google Scholar 

  • Coleman C, Yardley H (2008) Passive bistatic radar based on target illuminations by digital audio broadcasting. IET Radar Sonar Navig 2(5)

    Google Scholar 

  • Colone F (2011) Ambiguity function analysis of wireless LAN transmissions for passive radar. IEEE Trans Aerosp Electron Syst 47(1):240–264

    Article  Google Scholar 

  • Colone F (2017) Short-range passive radar potentialities. In: Klemm R, Nickel U, Gierull C, Lombardo P (eds) Novel radar techniques and applications – volume 1: real aperture array radar, imaging radar, and passive and multistatic radar. IET Publisher

    Google Scholar 

  • Colone F, Lombardo P (2015) Polarimetric passive coherent location. IEEE Trans Aerosp Electron Syst 51(2):1079–1097

    Article  Google Scholar 

  • Colone F, Lombardo P (2016) Non-coherent adaptive detection in passive radar exploiting polarimetric and frequency diversity. IET Radar Sonar Navig 10(1):15–23

    Article  Google Scholar 

  • Colone F, Falcone P, Bongioanni C, Lombardo P (2012) WiFi-based passive bistatic radar: data processing schemes and experimental results. IEEE Trans Aerosp Electron Syst 48(2):1061–1079

    Article  Google Scholar 

  • Colone F, Bongioanni C, Lombardo P (2013a) Multi-frequency integration in FM radio based passive bistatic radar. Part I: target detection. IEEE Aerosp Electron Syst Mag 28(4):28–39

    Article  Google Scholar 

  • Colone F, Bongioanni C, Lombardo P (2013b) Multi-frequency integration in FM radio based passive bistatic radar. Part II: direction of arrival estimation. IEEE Aerosp Electron Syst Mag 28(4):40–47

    Article  Google Scholar 

  • Colone F, Langellotti D, Lombardo P (2014a) DVB-T signal ambiguity function control for passive radars. IEEE Trans Aerosp Electron Syst 50(1):329–347

    Article  Google Scholar 

  • Colone F, Pastina D, Falcone P, Lombardo P (2014b) WiFi-based passive ISAR for high-resolution cross-range profiling of moving targets. IEEE Trans Geosci Remote Sens 52(6):3486–3501

    Article  Google Scholar 

  • Colone F, Palmarini C, Martelli T, Tilli E (2016) Sliding extensive cancellation algorithm for disturbance removal in passive radar. IEEE Trans Aerosp Electron Syst 52(3):1309–1326

    Article  Google Scholar 

  • Colone F, Martelli T, Lombardo P (2017) Quasi-monostatic versus near forward scatter geometry in WiFi-based passive radar sensors. IEEE Sensors J 17(15):4757–4772

    Article  Google Scholar 

  • Colone F, O’Hagan DW, Lombardo P, Baker CJ (2009) A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Trans Aerosp Electron Syst 45(2):698–722

    Article  Google Scholar 

  • Conti M, Moscardini C, Capria A (2016) Dual-polarisation DVB-T passive radar: experimental results, In: Proceedings of the IEEE national radar conference 2016, pp 1–5

    Google Scholar 

  • Dawidowicz B, Kulpa K, Malanowski M, Misiurewicz J, Samczynski P, Smolarczyk M (2012a) DPCA detection of moving targets in airborne passive radar. IEEE Trans Aerosp Electron Syst 48:1347–1357

    Article  Google Scholar 

  • Dawidowicz B, Samczynski P, Malanowski M, Misiurewicz J, Kulpa KS (2012b) Detection of moving targets with multichannel airborne passive radar. IEEE Aerosp Electron Syst Mag 27:42–49

    Article  Google Scholar 

  • De Cubber G (2019) Explosive drones: how to deal with this new threat?. In: Proceedings of the 9th international workshop on measurement, prevention, protection and management of CBRN risks, Belgium, pp 1–8

    Google Scholar 

  • Falcone P, Colone F, Lombardo P (2012) Potentialities and challenges of WiFi-based passive radar. IEEE Aerosp Electron Syst Mag 27(11):15–26

    Article  Google Scholar 

  • Filippini F, Colone F (2020a) Multi-carrier adaptive detection in polarimetric passive radars. In: 2020 IEEE radar conference (RadarConf20), pp 1–6

    Google Scholar 

  • Filippini F, Colone F (2020b) Polarimetric passive radar: a practical approach to parametric adaptive detection. IEEE Trans Aerosp Electron Syst 56:4930–4946

    Article  Google Scholar 

  • Filippini F, Colone F (2021) Multi-carrier and multi-polarimetric model based adaptive target detector for passive radar systems. IET Radar Sonar Navig 15:853–866

    Article  Google Scholar 

  • Filippini F, Colone F, Cristallini D, Bournaka G (2017) Experimental results of polarimetric detection schemes for DVB-T-based passive radar. IET Radar Sonar Navig 11(6):883–891

    Article  Google Scholar 

  • Filippini F, Martelli T, Colone F, Cardinali R (2018) Target DoA estimation in passive radar using non-uniform linear arrays and multiple frequency channels. In: 2018 IEEE radar conference (RadarConf18), Oklahoma City, OK, pp 1290–1295

    Google Scholar 

  • Gordon W (1985) A hundred years of radio propagation. IEEE Trans Antennas Propag 33(2):126–130

    Article  MathSciNet  MATH  Google Scholar 

  • Griffiths H (2013) The German WW2 HF radars elefant and see-elefant. IEEE Aerosp Electron Syst Mag 28(1):4–12

    Article  Google Scholar 

  • Griffiths H, Baker C (2005) Passive coherent location radar systems. Part 1: performance prediction. IEE Proc Radar Sonar Navig 152:153–159

    Article  Google Scholar 

  • Griffiths H, Baker C (2014) Passive bistatic radar. In: Melvin WL, Scheer JA (eds) Principles of modern radar, Radar applications, vol III. SciTech Publishing, Edison, pp 499–541

    Google Scholar 

  • Griffiths HD, Baker CJ (2017) An introduction to passive radar. Norwood, Artech House

    Google Scholar 

  • Griffiths H et al (2015) Radar spectrum engineering and management: technical and regulatory issues. Proc IEEE 103(1):85–102

    Article  Google Scholar 

  • Griffiths HD, Knott P, Koch W (2019) Christian Hülsmeyer: invention and demonstration of radar, 1904. IEEE Aerosp Electron Syst Mag 34(9):56–60

    Article  Google Scholar 

  • Howland PE, Maksimiuk D, Reitsma G (2005) FM radio based bistatic radar. IEE Proc Radar Sonar Navig 152:107–115

    Article  Google Scholar 

  • Ilioudis C, Clemente C, Soraghan J (2020) GNSS-based passive UAV monitoring: a feasibility study. IET Radar Sonar Navig 14(4):516–524

    Article  Google Scholar 

  • Jarabo-Amores MP et al (2018) Drone detection feasibility with passive radars. In: 2018 15th European radar conference (EuRAD), pp 313–316

    Google Scholar 

  • Jarabo-Amores M-P et al (2021) DVB-T-based passive radar for silent surveillance of drones. In: Clemente C, Fioranelli F, Colone F, Li G (eds) Radar countermeasures for unmanned aerial vehicles. SciTech Publishing

    Google Scholar 

  • Klemm R (1998) Introduction to space-time adaptive processing. In: IEE colloquium on space-time adaptive processing (Ref. No. 1998/241), pp 1/1–111

    Google Scholar 

  • Klemm R (2004) Applications of space-time adaptive processing. IEE Publishing

    Book  Google Scholar 

  • Klemm R et al (eds) (2017) Novel radar techniques and applications, Part III: passive and multistatic radar. IET Publisher

    Google Scholar 

  • Langellotti D et al (2014) Over the horizon maritime surveillance capability of DVB-T based passive radar. In: 2014 44th European microwave conference, pp 1812–1815

    Google Scholar 

  • Li W, Piechocki RJ, Woodbridge K, Tang C, Chetty K (2021) Passive WiFi radar for human sensing using a stand-alone access point. IEEE Trans Geosci Remote Sens 59(3):1986–1998

    Article  Google Scholar 

  • Lombardo P, Colone F (2012) Advanced processing methods for passive bistatic radar. In: Melvin WL, Scheer JA (eds) Principles of modern radar: advanced radar techniques. SciTech Publishing, Raleigh, pp 739–821

    Google Scholar 

  • Lombardo P et al (2021) Multiband passive radar for drones detection and localization. In: Clemente C, Fioranelli F, Colone F, Li G (eds) Radar countermeasures for unmanned aerial vehicles. SciTech Publishing

    Google Scholar 

  • Malanowski M (2019) Signal processing for passive bistatic radar. Artech House, Norwood

    Google Scholar 

  • Marconi SG (1922) Radio telegraphy. Proc Inst Radio Eng 10(4):215–238

    Google Scholar 

  • Martelli T, Colone F, Tilli E, Di Lallo A (2016) Multi-frequency target detection techniques for DVB-T based passive radar sensors. Sensors 16:1594

    Article  Google Scholar 

  • Martelli T, Colone F, Tilli E, Di Lallo A (2017a) Maritime surveillance via multi-frequency DVB-T based passive radar In: 2017 IEEE radar conference (RadarConf), pp 0540–0545

    Google Scholar 

  • Martelli T, Murgia F, Colone F, Bongioanni C, Lombardo P (2017b) Detection and 3D localization of ultralight aircrafts and drones with a WiFi-based passive radar. In: Proceedings of the 2017 international conference on radar systems (Radar 2017), Belfast, UK, pp 1–6

    Google Scholar 

  • Martelli T, Filippini F, Pignol F, Colone F, Cardinali R (2018) Computationally effective range migration compensation in PCL systems for maritime surveillance. In: 2018 IEEE radar conference (RadarConf18), pp 1406–1411

    Google Scholar 

  • Martelli T, Cabrera O, Colone F, Lombardo P (2020a) Exploitation of long coherent integration times to improve drone detection in DVB-S based passive radar. In: 2020 IEEE radar conference (RadarConf20), pp 1–6

    Google Scholar 

  • Martelli T, Colone F, Cardinali R (2020b) DVB-T based passive radar for simultaneous counter drone operations and civil air traffic surveillance. IET Radar Sonar Navig 14(4):505–515

    Article  Google Scholar 

  • Martelli T, Filippini F, Colone F (2020c) Tackling the different target dynamics issues in counter drone operations using passive radar. In 2020 IEEE international radar conference (RADAR), pp 512–517

    Google Scholar 

  • Milani I, Colone F, Lombardo P (2018) 2D localization with WiFi passive radar and device-based techniques: an analysis of target measurements accuracy. In: 2018 19th international radar symposium (IRS), pp 1–10

    Google Scholar 

  • Milani I, Bongioanni C, Colone F, Lombardo P (2020) Fusing active and passive measurements for drone localization. In: 2020 21st international radar symposium (IRS), pp 245–249

    Google Scholar 

  • Milani I, Bongioanni C, Colone F, Lombardo P (2021) Fusing measurements from Wi-Fi emission-based and passive radar sensors for short-range surveillance. Remote Sens 13:3556

    Article  Google Scholar 

  • Olsen KE, Woodbridge K (2012a) Performance of a multiband passive bistatic radar processing scheme—Part I. IEEE Aerosp Electron Syst Mag 27(10):16–25

    Article  Google Scholar 

  • Olsen KE, Woodbridge K (2012b) Performance of a multiband passive bistatic radar processing scheme-Part II. IEEE Aerosp Electron Syst Mag 27(11):4–14

    Article  Google Scholar 

  • Palmer JE, Harms HA, Searle SJ, Davis L (2013) DVB-T passive radar signal processing. IEEE Trans Signal Process 61(8):2116–2126

    Article  Google Scholar 

  • Palmer J, Cristallini D, Kuschel H (2015) Opportunities and current drivers for passive radar research. In: IEEE radar conference, Johannesburg

    Google Scholar 

  • Palmer J et al (2017) Receiver platform motion compensation in passive radar. IET Radar Sonar Navig 11:922–931

    Article  Google Scholar 

  • Pastina D, Colone F, Martelli T, Falcone P (2015) Parasitic exploitation of Wi-Fi signals for indoor radar surveillance. IEEE Trans Veh Technol 64(4):1401–1415

    Article  Google Scholar 

  • Pignol F, Colone F, Martelli T (2018) Lagrange-polynomial-interpolation-based keystone transform for a passive radar. IEEE Trans Aerosp Electron Syst 54(3):1151–1167

    Article  Google Scholar 

  • Poullin D (2005) Passive detection using digital broadcasters (DAB DVB) with COFDM modulation. Proc. Inst. Electr. Eng. Radar Sonar Navig 152:143–152

    Article  Google Scholar 

  • Ritchie M, Fioranelli F, Borrion H (2017) Micro UAV crime prevention: can we help Princess Leia? In: Savona BL (ed) Crime prevention in the 21st century. Springer, New York, pp 359–376

    Chapter  Google Scholar 

  • Saini R, Cherniakov M (2005) DTV signal ambiguity function analysis for radar application. IEE Proc Radar Sonar Navig 152:133–142

    Article  Google Scholar 

  • Schüpbach C, Patry C, Maasdorp F et al (2017) Micro-UAV detection using DAB-based passive radar. In: IEEE radar conference, Seattle, WA, pp 1037–1040

    Google Scholar 

  • Sun H, Chia LG, Razul SG (2021) Through-wall human sensing with WiFi passive radar. IEEE Trans Aerosp Electron Syst 57(4):2135–2148

    Article  Google Scholar 

  • Tan DKP, Lesturgie M, Sun H, Lu Y (2014) Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity. IET Radar Sonar Navig 8(2):142–152

    Article  Google Scholar 

  • Tan B, Woodbridge K, Chetty K (2016) Awireless passive radar system for real-time through-wall movement detection. IEEE Trans Aerosp Electron Syst 52(5):2596–2603

    Article  Google Scholar 

  • Ummenhofer M, Lavau LC, Cristallini D, O’Hagan D (2020) UAV micro-doppler signature analysis using DVB-S based passive radar. In: 2020 IEEE international radar conference (RADAR), pp 1007–1012

    Google Scholar 

  • Wojaczek P, Colone F, Cristallini D, Lombardo P (2019) Reciprocal-filter-based STAP for passive radar on moving platforms. IEEE Trans Aerosp Electron Syst 55(2):967–988

    Article  Google Scholar 

  • Wojaczek P, Cristallini D, O’Hagan DW, Colone F, Blasone GP, Lombardo P (2021) A three-stage inter-channel calibration approach for passive radar on moving platforms exploiting the minimum variance power spectrum. Sensors 21(1):69

    Article  Google Scholar 

  • Wu Q, Zhang YD, Amin MG, Himed B (2016) Space–time adaptive processing and motion parameter estimation in multistatic passive radar using sparse Bayesian learning. IEEE Trans Geosci Remote Sens 54(2):944–957

    Article  Google Scholar 

  • Yang P-C, Lyu X-D, Chai Z-H, Zhang D, Yue Q, Yang J-M (2017) Clutter cancellation along the clutter ridge for airborne passive radar. IEEE Geosci Remote Sens Lett 14(6):951–955

    Article  Google Scholar 

  • Yardley HJ (2007) Bistatic radar based on DAB ifluminators: the evolution of a practical system. IEEE Aerosp Electron Syst Mag 22(11):13–16

    Article  Google Scholar 

  • Zaimbashi A (2016) Multiband FM-based passive bistatic radar: target range resolution improvement. IET Radar Sonar Navig 10(1):174–185

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the collaboration of many colleagues at Sapienza University of Rome. We are extremely thankful to all the colleagues of the entire Radar Remote Sensing and Navigation research group whose support was essential to the realization of the work reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Filippini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippini, F., Colone, F. (2023). Passive Radar: A Challenge Where Resourcefulness Is the Key to Success. In: Greco, M.S., Cassioli, D., Ullo, S.L., Lyons, M.J. (eds) Women in Telecommunications. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-031-21975-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21975-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21974-0

  • Online ISBN: 978-3-031-21975-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics