Skip to main content

Pavement Distress Detection Using Deep Learning Based Methods: A Survey on Role, Challenges and Opportunities

  • Conference paper
  • First Online:
Computing, Communication and Learning (CoCoLe 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1729))

Included in the following conference series:

  • 348 Accesses

Abstract

Roadways have always been one of the most used modes of transportation, and their contribution to the nation’s economy is also huge. To meet the demands of the growing global population and an increase in urbanization, there has been an exponential rise in the number of vehicles plying on the roads as well as the length of the roads. With this increase in traffic, coupled with other issues like heavy rainfall, the material used for the construction of the road, etc., the condition of the roads deteriorates with cracks and potholes developing on them, which may lead to serious accidents. For effective maintenance of roads and to reduce the associated risks, these defects must be detected. With the advent of Deep Learning (DL) in the recent past and its applications in various sectors, we have comprehensively explored various approaches, particularly using DL in this study, along with the associated challenges in adopting such techniques and future opportunities in this domain. Based on our analysis, using object detection-based models turned out to outperform other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Road Accidents in India: Ministry of Road Transport and Highways, Transport Research Wing, Govt. of India (2018). https://morth.nic.in/sites/default/files/Road_Accidednt.pdf

  2. McGhee, K.: Automated Pavement Distress Collection Techniques, National Cooperative Highway Research Program, NCHRP Synthesis 334 Report, Transportation Research Board, Washington DC (2004). https://doi.org/10.17226/23348

  3. Eisenbach, M.: Gross, How to get pavement distress detection ready for deep learning? A systematic approach. In: International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047 (2017). https://doi.org/10.1109/IJCNN.2017.7966101

  4. Zhang, D., et al.: Automatic pavement defect detection using 3D laser profiling technology. Autom. Constr. 96, 350–365 (2018). https://doi.org/10.1016/j.autcon.2018.09.019

    Article  Google Scholar 

  5. Guan, J., Yang, X., Ding, L., Cheng, X., Lee, V.C., Jin, C.: Automated pixel-level pavement distress detection based on stereo vision and deep learning. Autom. Constr. 129, 103788 (2021). https://doi.org/10.1016/j.autcon.2021.103788

    Article  Google Scholar 

  6. Mertz, C., Varadharajan, S., Jose, S., Sharma, K., Wander, L., Wang, J.: City-wide road distress monitoring with smartphones. In: Proceedings of ITS World Congress, pp. 1–9 (2014). https://www.ri.cmu.edu/pub_files/2014/9/road_monitor_mertz_final.pdf. Accessed 28 July 2021

  7. Avellaneda, D.A.C., López-Parra, J.F.: Detection and localization of potholes in roadways using smartphones. DYNA 83(195), 156–162 (2016). https://doi.org/10.15446/dyna.v83n195.44919

    Article  Google Scholar 

  8. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., Omata, H.: Road damage detection and classification using deep neural networks with smartphone images. Comput. Aided Civ. Infrastruct. Eng. 33, 1127–1141 (2018). https://doi.org/10.1111/mice.12387

    Article  Google Scholar 

  9. Yuchuan, D., Pan, N., Zihao, X., Fuwen Deng, Y., Shen, H.K.: Pavement distress detection and classification based on YOLO network. Int. J. Pavement Eng. 22(13), 1659–1672 (2020). https://doi.org/10.1080/10298436.2020.1714047

    Article  Google Scholar 

  10. Majidifard, H., Jin, P., Adu-Gyamfi, Y., Buttlar, W.G.: Pavement image datasets: a new benchmark dataset to classify and densify pavement distresses. Transp. Res. Rec. 2674, 328–339 (2020). https://doi.org/10.1177/0361198120907283

    Article  Google Scholar 

  11. Patra, S., Middya, A.I., Roy, S.: PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning. Multimedia Tools Appl. 80(16), 25171–25195 (2021). https://doi.org/10.1007/s11042-021-10874-4

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, (2016). http://www.deeplearningbook.org

  13. Alfarrarjeh, A., Trivedi, D., Kim, S.H., Shahabi, C.: A deep learning approach for road damage detection from smartphone images. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5201–5204. IEEE (2018). https://doi.org/10.1109/BigData.2018.8621899

  14. Kluger, F., et al.: Region-based cycle-consistent data augmentation for object detection. In: 2018 IEEE International Conference on Big Data (Big Data), , pp. 5205–5211. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622318

  15. Wang, Y.J., Ding, M., Kan, S., Zhang, S., Lu, C.: Deep proposal and detection networks for road damage detection and classification. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5224–5227. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622599

  16. Wang, W., Wu, B., Yang, S., Wang, Z.: Road damage detection and classification with faster R-CNN. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5220–5223. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622354

  17. Angulo, A., Vega-Fernández, J.A., Aguilar-Lobo, L.M., Natraj, S., Ochoa-Ruiz, G.: Road damage detection acquisition system based on deep neural networks for physical asset management. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds.) MICAI 2019. LNCS (LNAI), vol. 11835, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33749-0_1

    Chapter  Google Scholar 

  18. Roberts, R., Giancontieri, G., Inzerillo, L., Di Mino, G.: Towards low-cost pavement condition health monitoring and analysis using deep learning. Appl. Sci. 10, 319 (2020). https://doi.org/10.3390/app10010319

    Article  Google Scholar 

  19. Biçici, S., Zeybek, M.: An approach for the automated extraction of road surface distress from a UAV-derived point cloud. Autom. Constr. 122, 103475 (2021). https://doi.org/10.1016/j.autcon.2020.103475

    Article  Google Scholar 

  20. Zhang, A., et al.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 32, 805–819 (2017). https://doi.org/10.1111/mice.12297

    Article  Google Scholar 

  21. Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712. IEEE (2016). https://doi.org/10.1109/ICIP.2016.7533052

  22. Silva, W.R.L.D., Lucena, D.S.D.: Concrete cracks detection based on deep learning image classification. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 489 (2018). https://doi.org/10.3390/ICEM18-05387

  23. Anand, S., Gupta, S., Darbari, V., Kohli, S.: Crack-pot: autonomous road crack and pothole detection. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE (2018). https://doi.org/10.1109/DICTA.2018.8615819

  24. Fan, Z., Wu, Y., Lu, J., Li, W.: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. arXiv preprint arXiv:1802.02208 (2018)

  25. Oliveira, H., Correia, P.L.: CrackIT—an image processing toolbox for crack detection and characterization. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 798–802. IEEE (2014). https://doi.org/10.1109/ICIP.2014.7025160

  26. Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17, 3434–3445 (2016). https://doi.org/10.1109/TITS.2016.2552248

    Article  Google Scholar 

  27. Cui, L., Qi, Z., Chen, Z., Meng, F., Shi, Y.: Pavement distress detection using random decision forests. In: Zhang, C., et al. (eds.) ICDS 2015. LNCS, vol. 9208, pp. 95–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24474-7_14

  28. Mei, Q., GĂĽl, M.: A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 256, 119397 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119397

    Article  Google Scholar 

  29. Li, L., Sun, L., Ning, G., Tan, S.: Automatic pavement crack recognition based on BP neural network. PROMET-Traffic Transp. 26, 11–22 (2014). https://doi.org/10.7307/ptt.v26i1.1477

    Article  Google Scholar 

  30. Dorafshan, S., Thomas, R.J., Maguire, M.: SDNET2018: an annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief. 21, 1664–1668 (2018). https://doi.org/10.1016/j.dib.2018.11.015

    Article  Google Scholar 

  31. Qin Zou, Y., Cao, Q.L., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn Let 33(3), 227–238 (2012). https://doi.org/10.1016/j.patrec.2011.11.004

    Article  Google Scholar 

  32. Stricker, R., Eisenbach, M., Sesselmann, M., Debes, K., Gross, H.-M.: Improving visual road condition assessment by extensive experiments on the extended gaps dataset. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019). https://doi.org/10.1109/IJCNN.2019.8852257

  33. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21, 1525–1535 (2020). https://doi.org/10.1109/TITS.2019.2910595

    Article  Google Scholar 

  34. Weng, X., Huang, Y., Wang, W.: Segment-based pavement crack quantification. Autom. Constr. 105, 102819 (2019). https://doi.org/10.1016/j.autcon.2019.04.014

    Article  Google Scholar 

  35. Arya, D., et al.: Deep learning-based road damage detection and classification for multiple countries. Autom. Construct. 132, 103935 (2021). ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2021.103935

  36. Hatmoko, J., Setiadji, B., Wibowo, M.: Investigating causal factors of road damage: a case study. MATEC Web Conf. 258, 02007 (2019). https://doi.org/10.1051/matecconf/201925802007

    Article  Google Scholar 

  37. Ross, B.G., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  38. Ross, B.G.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  39. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  40. Joseph, R., Divvala, S.K., Girshick R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  41. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  42. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  43. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. LNCS, vol. 8689. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  44. Zhu, J., Zhong, J., Ma, T., Huang, X., Zhang, W., Zhou, Y.: Pavement distress detection using convolutional neural networks with images captured via UAV. Autom. Constr. 133, 103991 (2022). https://doi.org/10.1016/j.autcon.2021.103991

  45. Zhang, C., Nateghinia, E., Miranda-Moreno, L.F., Sun, L.: Pavement distress detection using convolutional neural network (CNN): a case study in Montreal, Canada. Int. J. Transp. Sci. Technol. 11(2), 298–309 (2022). https://doi.org/10.1016/j.ijtst.2021.04.008

    Article  Google Scholar 

  46. Guerrieri, M., Parla, G.: Flexible and stone pavements distress detection and measurement by deep learning and low-cost detection devices. Eng. Failure Anal. 141, 106714 (2022). https://doi.org/10.1016/j.engfailanal.2022.106714

  47. Wen, T., et al.: Automated pavement distress segmentation on asphalt surfaces using a deep learning network. Int. J. Pavem. Eng. 1–14 (2022). https://doi.org/10.1080/10298436.2022.2027414

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Khatri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khatri, A., Khatri, R., Kumar, A., Kumar, K. (2022). Pavement Distress Detection Using Deep Learning Based Methods: A Survey on Role, Challenges and Opportunities. In: Panda, S.K., Rout, R.R., Sadam, R.C., Rayanoothala, B.V.S., Li, KC., Buyya, R. (eds) Computing, Communication and Learning. CoCoLe 2022. Communications in Computer and Information Science, vol 1729. Springer, Cham. https://doi.org/10.1007/978-3-031-21750-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21750-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21749-4

  • Online ISBN: 978-3-031-21750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics