Skip to main content

Influence of the Collaboration Among Predators and the Weak Allee Effect on Prey in a Modified Leslie-Gower Predation Model

  • Conference paper
  • First Online:
Mathematical Methods for Engineering Applications (ICMASE 2022)

Abstract

In this work, the behavior of the solutions of a bi-dimensional system of ordinary differential equations that models predator-prey interaction will be analyzed, obtained through a modification of the Leslie-Gower model, where the predator population considers hunting cooperation and the prey population is affected by a weak Allee effect. It is possible to find conditions for the coexistence of both species, as well as the possibility of periodic solutions, that imply oscillatory coexistence between species. We extend the properties already known for the case with a strong Allee effect and focus on the study of stability and local bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores JD (2011) Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Applied Mathematical Modelling 35(1):366–381, https://doi.org/10.1016/j.apm.2010.07.001, https://www.sciencedirect.com/science/article/pii/S0307904X10002507

  2. González-Olivares E, nez BGY, Mena-Lorca J, Ramos-Jiliberto R (2007) Modelling the Allee effect: Are the different mathematical forms proposed equivalents? In: Mondaini R (ed) Proc. of the 2006 International Symposium on Mathematical and Computational Biology: BIOMAT 2006, Editora E-papers, pp 53–71

    Google Scholar 

  3. Teixeira Alves M, Hilker FM (2017) Hunting cooperation and Allee effects in predators. Journal of Theoretical Biology 419:13–22, https://doi.org/10.1016/j.jtbi.2017.02.002, https://www.sciencedirect.com/science/article/pii/S0022519317300577

  4. Martínez-Jeraldo N, Rozas-Torres E, González-Olivares E (2021) A Leslie-Gower-type predation model considering generalist predators and the Allee effect on prey. Selecciones Matemáticas 8(01):147–160, https://doi.org/10.17268/sel.mat.2021.01.14, https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3712

  5. Ye P, Wu D (2020) Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system. Chinese Journal of Physics 68:49–64, https://doi.org/10.1016/j.cjph.2020.07.021, https://www.sciencedirect.com/science/article/pii/S0577907320302392

  6. Jang SRJ, Zhang W, Larriva V (2018) Cooperative hunting in a predator-prey system with Allee effects in the prey. Natural Resource Modeling 31(4):e12,194, https://doi.org/10.1111/nrm.12194, https://onlinelibrary.wiley.com/doi/abs/10.1111/nrm.12194

  7. González-Olivares E, Cabrera-Villegas J, Lepe FC, Rojas-Palma A (2019) Competition among predators and Allee effect on prey, their influence on a Gause-type predation model. Mathematical Problems in Engineering 2019:1–19, https://doi.org/10.1155/2019/3967408, https://www.hindawi.com/journals/mpe/2019/3967408/

  8. González-Olivares E, Valenzuela-Figueroa S, Rojas-Palma A (2019) A simple Gause-type predator-prey model considering social predation. Mathematical Methods in the Applied Sciences 42(17):5668–5686, https://doi.org/10.1002/mma.5372, https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5372

  9. Antonelli P, Kazarinoff N (1984) Starfish predation of a growing coral reef community. Journal of Theoretical Biology 107(4):667–684, https://doi.org/10.1016/S0022-5193(84)80138-1, https://www.sciencedirect.com/science/article/pii/S0022519384801381

  10. Francomano E, Hilker FM, Paliaga M, Venturino E (2018) Separatrix reconstruction to identify tipping points in an eco-epidemiological model. Applied Mathematics and Computation 318:80–91, https://doi.org/10.1016/j.amc.2017.07.022, https://www.sciencedirect.com/science/article/pii/S0096300317304733, recent Trends in Numerical Computations: Theory and Algorithms

  11. MacNulty DR, Tallian A, Stahler DR, Smith DW (2014) Influence of group size on the success of wolves hunting bison. Plos One 9(11):1–8, https://doi.org/10.1371/journal.pone.0112884, https://doi.org/10.1371/journal.pone.0112884

  12. Antonelli P, Lin X (1990) Bifurcation analysis on a coral-starfish model. Mathematical and Computer Modelling 13(6):35–44, https://doi.org/10.1016/0895-7177(90)90007-A, https://www.sciencedirect.com/science/article/pii/089571779090007A

  13. Antonelli P, Kazarinoff N (1988) Modelling density-dependent aggregation and reproduction in certain terrestrial and marine ecosystems: A comparative study. Ecological Modelling 41(3):219–227, https://doi.org/10.1016/0304-3800(88)90029-4, https://www.sciencedirect.com/science/article/pii/0304380088900294

  14. Bazykin AD, Khibnik AI, Krauskopf B (1998) Nonlinear Dynamics of Interacting Populations. World Scientific, https://doi.org/10.1142/2284, https://www.worldscientific.com/doi/abs/10.1142/2284

  15. González-Olivares E, Rojas-Palma A (2020) Influence of the strong Allee effect on prey and the competition among predators in Leslie-Gower type predation models. Selecciones Matemáticas 7(02):302–313, https://doi.org/10.17268/sel.mat.2020.02.12, https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3206

  16. Maynard-Smith J (1974) Models in Ecology. Cambridge University Press

    Google Scholar 

  17. González-Olivares E, González-Yañez B, Becerra-Klix R, Ramos-Jiliberto R (2017) Multiple stable states in a model based on predator-induced defenses. Ecological Complexity 32:111–120, https://doi.org/10.1016/j.ecocom.2017.10.004, https://www.sciencedirect.com/science/article/pii/S1476945X17300867

  18. Boukal DS, Berec L (2002) Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology 218(3):375–394, https://doi.org/10.1006/jtbi.2002.3084, https://www.sciencedirect.com/science/article/pii/S0022519302930845

  19. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology Evolution 14(10):401–405, https://doi.org/10.1016/S0169-5347(99)01684-5, https://www.sciencedirect.com/science/article/pii/S0169534799016845

  20. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87(1):185–190, http://www.jstor.org/stable/3547011

  21. Kot M (2001) Elements of Mathematical Ecology. Cambridge University Press, https://doi.org/10.1017/CBO9780511608520

    Article  MATH  Google Scholar 

  22. Courchamp F, Berec L, Gascoigne J (2008) Allee Effects in Ecology and Conservation. Oxford biology readers, OUP Oxford

    Book  Google Scholar 

  23. Dennis B (1989) Allee effects: Population growth, critical density, and the chance of extinction. Natural Resource Modeling 3(4):481–538, https://doi.org/10.1111/j.1939-7445.1989.tb00119.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1939-7445.1989.tb00119.x

  24. Boukal DS, Sabelis MW, Berec L (2007) How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theoretical Population Biology 72(1):136–147, https://doi.org/10.1016/j.tpb.2006.12.003, https://www.sciencedirect.com/science/article/pii/S0040580906001687

  25. Thieme HR (2003) Mathematics in Population Biology. Princeton University Press, http://www.jstor.org/stable/j.ctv301f9v

  26. Philip JR (1957) Sociality and sparse populations. Ecology 38(1):107–111, http://www.jstor.org/stable/1932132

  27. Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends in Ecology Evolution 22(4):185–191, https://doi.org/10.1016/j.tree.2006.12.002, https://www.sciencedirect.com/science/article/pii/S0169534706003818

  28. Boukal DS, Berec L (2009) Modelling mate-finding Allee effects and populations dynamics, with applications in pest control. Population Ecology 51(3):445–458, https://doi.org/10.1007/s10144-009-0154-4, https://esj-journals.onlinelibrary.wiley.com/doi/abs/10.1007/s10144-009-0154-4

  29. Leslie PH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35(3/4):213–245, http://www.jstor.org/stable/2332342

  30. Leslie PH, Gower JC (1960) The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47(3/4):219–234, http://www.jstor.org/stable/2333294

  31. Freedman H (1980) Deterministic Mathematical Models in Population Ecology. Monographs and textbooks in pure and applied mathematics, M. Dekker

    Google Scholar 

  32. Goh BS (1980) Management and Analysis of Biological Populations, Developments in Agricultural and Managed Forest Ecology, vol 8. Elsevier, https://doi.org/10.1016/B978-0-444-41793-0.50006-X, https://www.sciencedirect.com/science/article/pii/B978044441793050006X

  33. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends in Ecology Evolution 14(10):405–410, https://doi.org/10.1016/S0169-5347(99)01683-3, https://www.sciencedirect.com/science/article/pii/S0169534799016833

  34. González-Olivares E, Rojas-Palma A (2021) Influencia del efecto Allee en las presas y de la colaboración entre los depredadores en un modelo de depredación del tipo Leslie-Gower. Modelamiento Matemático de Sistemas Biológicos (MMSB) 1(2):21–29, https://revistammsb.utem.cl/articulos/

  35. Chicone C (2008) Ordinary Differential Equations with Applications. Texts in Applied Mathematics, Springer New York

    Google Scholar 

  36. Perko L, Perko L (2001) Differential Equations and Dynamical Systems. Texts in Applied Mathematics, Springer New York, https://link.springer.com/book/10.1007/978-1-4613-0003-8

  37. Monzón P (2005) Almost global attraction in planar systems. Systems Control Letters 54(8):753–758, https://doi.org/10.1016/j.sysconle.2004.11.014, https://www.sciencedirect.com/science/article/pii/S0167691104002099

  38. Rantzer A (2001) A dual to lyapunov’s stability theorem. Systems Control Letters 42(3):161–168, https://doi.org/10.1016/S0167-6911(00)00087-6, https://www.sciencedirect.com/science/article/pii/S0167691100000876

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rojas-Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas-Palma, A., González-Olivares, E. (2023). Influence of the Collaboration Among Predators and the Weak Allee Effect on Prey in a Modified Leslie-Gower Predation Model. In: Yilmaz, F., Queiruga-Dios, A., Martín Vaquero, J., Mierluş-Mazilu, I., Rasteiro, D., Gayoso Martínez, V. (eds) Mathematical Methods for Engineering Applications. ICMASE 2022. Springer Proceedings in Mathematics & Statistics, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-031-21700-5_15

Download citation

Publish with us

Policies and ethics