Skip to main content

BoVW-CAM: Visual Explanation from Bag of Visual Words

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

Classical computer vision solutions were used to extract image features designed by human experts for encoding visual scenes into vectors. Machine learning algorithms were then applied to model such vector space and assign labels to unseen vectors. Alternatively, such space could be composed of histograms generated using the Bag of Visual Words (BoVW) that compute the number of occurrences of clustered handcrafted features/descriptors in each image. Currently, Deep Learning methods automatically learn image features that maximize the accuracy of classification and object recognition. Still, Deep Learning fails in terms of interpretability. To tackle this issue, methods such as Grad-CAM allow the visualization of regions from input images that support the predictions generated by Convolutional Neural Networks (CNNs), i.e. visual explanations. However, there is a lack of similar visualization techniques for handcrafted features. This fact obscures the comparison between modern CNNs and classical methods for image classification. In this work, we present the BoVW-CAM that indicates the most important image regions for each prediction given by the BoVW technique. This way, we show a novel approach to compare the performance of learned and handcrafted features in the image domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset.

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)

    Google Scholar 

  2. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  5. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, Prague, vol. 1, pp. 1–2 (2004)

    Google Scholar 

  6. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  7. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  8. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)

  9. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. App. 13(4), 18–28 (1998)

    Article  Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555. IEEE (2011)

    Google Scholar 

  12. Lin, W., Hasenstab, K., Moura Cunha, G., Schwartzman, A.: Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  13. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  16. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom. J. Chemom. Soc. 18(6), 275–285 (2004)

    Google Scholar 

  17. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs non-handcrafted features for computer vision classification. Pattern Recogn. 71, 158–172 (2017)

    Article  Google Scholar 

  18. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  20. Saba, T.: Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features. Microsc. Res. Tech. 84(6), 1272–1283 (2021)

    Article  Google Scholar 

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  22. da Silva, A.V.B., Pereira, L.F.A.: Handcrafted vs. learned features for automatically detecting violence in surveillance footage. In: Anais do XLIX Seminário Integrado de Software e Hardware, pp. 82–91. SBC (2022)

    Google Scholar 

  23. Zar, J.H.: Spearman rank correlation. Encyclop. Biostatist. 7, 1–7 (2005)

    Google Scholar 

  24. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  25. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaldo Vitor Barros da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, A.V.B., Alves Pereira, L.F. (2022). BoVW-CAM: Visual Explanation from Bag of Visual Words. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13654 . Springer, Cham. https://doi.org/10.1007/978-3-031-21689-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21689-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21688-6

  • Online ISBN: 978-3-031-21689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics