Skip to main content

Genetic Improvement of Specialty Corn for Nutritional Quality Traits

  • Chapter
  • First Online:
Maize Improvement

Abstract

Specialty corn has emerged as a preferred choice as food, feed, and various industrial products due to its diverse usage. Among the various types, sweet corn, popcorn, waxy corn, high amylose corn, high oil corn, colored corn, and baby corn are quite popular worldwide. Genes or QTLs governing these traits are now well documented. Introgression of such loci has led to the development of improved specialty corn cultivars worldwide. Information on markers has further helped in accelerating the breeding cycle through marker-assisted breeding. Crop biofortification has now regarded as a sustainable and cost-effective approach to alleviate malnutrition. Various genes are now available to enhance nutritional quality like provitamin-A, provitamin-E, lysine, and tryptophan in maize. These nutritional quality traits have been integrated into the genetic background of specialty corn cultivars. Here, we present the importance of each of the specialty corn, their genetics, and scope of enhancing the nutritional quality traits in the specialty corn background. Various challenges in popularization and adoption of the biofortified maize have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adunola PM (2017) Introgression of opaque2 gene into the genetic background of popcorn using marker assisted selection. Master’s thesis, Federal University of Technology, Akure

    Google Scholar 

  • Ai Y, Jane J (2016) Macronutrients in corn and human nutrition. Compr Rev Food Sci Food Saf 15:581–598

    Article  CAS  PubMed  Google Scholar 

  • Alexender DE (1988) Breeding special nutritional and industrial types. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Crop Science Society of America, Madison, pp 869–880

    Google Scholar 

  • Aoki H, Kuze N, Kato Y et al (2002) Anthocyanins isolated from purple corn (Zea mays L.). Foods Food Ingred J Japan 199:41–45

    Google Scholar 

  • Babu R, Nair S, Kumar A et al (2006) Mapping QTLs for popping ability in a popcorn × flint corn cross. Theor Appl Genet 112:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Babu S, Raghavendra S, Avasthe RK et al (2020) Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn in Eastern Himalayas. Sci Rep 10:16129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao JD, Yao JQ, Zhu JQ et al (2012) Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol Breed 30:1707–1714

    Article  CAS  Google Scholar 

  • Bar-Zur A, Schaffer A (1993) Size and carbohydrate content of ears of baby corn in relation to endosperm type (Su, su, se, sh2). J Am Soc Hortic Sci 118:118–141

    Google Scholar 

  • Baveja A, Muthusamy V, Panda KK et al (2021) Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes. J Appl Genet 62(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Baveja A, Chhabra R, Panda KK et al (2022) Expression analysis of opaque2, crtRB1 and shrunken2 genes during different stages of kernel development in biofortified sweet corn. J Cereal Sci 105:103466

    Article  CAS  Google Scholar 

  • Benitez J, Gernat A, Murillo J et al (1999) The use of high oil corn in broiler diets. Poult Sci 78:861–865

    Article  CAS  PubMed  Google Scholar 

  • Betran FJ, Bockholt AJ, Rooney LW (2000) Blue corn. In: Specialty corns. CRC Press, pp 305–314

    Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P et al (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Boyer C, Hannah L (2001) Kernel mutants of corn. In: Specialty corns, 2nd edn. Hallauer, pp 1–32

    Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brink RA, Weyers WH (1957) Invariable genetic change in maize plants heterozygous for marbled aleurone. Proc Natl Acad Sci U S A 43:1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzada JP, Padilla J (2009) The Mexican landraces: description, classification and diversity. In: Handbook of maize: its biology. Springer, pp 543–561

    Chapter  Google Scholar 

  • Cassani E, Puglisi D, Cantaluppi E et al (2017) Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: the “Nero Spinoso” from the Camonica valley. Genet Resour Crop Evol 64:761–773

    Article  Google Scholar 

  • Chai Y, Hao X, Yang X et al (2011) Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed 29:939–949

    Article  Google Scholar 

  • Chatham LA, Paulsmeyer M, Juvik JA (2019) Prospects for economical natural colorants: insights from maize. Theor Appl Genet 132(11):2927–2946

    Article  CAS  PubMed  Google Scholar 

  • Chauhan HS, Chhabra R, Rashmi T et al (2021) Impact of vte4 and crtRB1 genes on composition of vitamin-E and provitamin-a carotenoids during kernel-stages in sweet corn. J Food Compos Anal 105:104264

    Article  Google Scholar 

  • Chauhan HS, Zunjare RU, Rashmi T et al (2022) Accelerated development of vitamin-a and vitamin-E rich sweet corn hybrids through marker-assisted introgression of crtRB1 and vte4 genes. In: Abstracts of 43rd annual meeting of PTCA(I) & international symposium on “advances in plant biotechnology and nutritional security” APBNS-2022, p 217, 28–30 Apr 2022

    Google Scholar 

  • Chen TT, Ning LH, Liu X et al (2013) Development of functional molecular markers of SbeI and SbeIIb for the high amylose maize germplasm line GEMS-0067. Crop Sci 53:482–490

    Article  CAS  Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2019a) Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. J Cereal Sci 87:258–265

    Article  CAS  Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2019b) Development and validation of breeder-friendly functional markers of sugary1 gene encoding starch-debranching enzyme (DBE) involved in enhancing kernel sweetness in maize. Crop Pasture Sci 70:868–875

    Article  CAS  Google Scholar 

  • Chhabra R, Hossain F, Muthusamy V et al (2020) Development and validation of gene-based markers for shrunken2-reference allele and their utilization in marker-assisted sweet corn (Zea mays sachharata) breeding programme. Plant Breed 139:1135. https://doi.org/10.1111/pbr.12872

    Article  CAS  Google Scholar 

  • Chhabra R, Muthusamy V, Gain N et al (2021) Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and wild-type maize inbreds. Mol Gen Genomics 23:1–18

    Google Scholar 

  • Clark D, Dudley JW, Rocheford TR et al (2006) Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO. Crop Sci 46:807

    Article  Google Scholar 

  • Coe EH Jr (1962) Spontaneous mutation of the aleurone color inhibitor in maize. Genetics 47:779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins NE, Moran ET, Stilborn HL (2003) Performance of broilers feed normal and waxy corn diets formulated with chick and rooster derived apparent metabolizable energy values for the grains. J Appl Poult Res 12:196–206

    Article  Google Scholar 

  • da Silva W, Vidal B, Martins M et al (1993) What makes popcorn pop. Nature 362(6419):417

    Article  Google Scholar 

  • Das AK, Gowda MM, Muthusamy V et al (2021) Development of maize hybrids with enhanced vitamin-E, vitamin-A, lysine and tryptophan through molecular breeding. Front Plant Sci 12:659381

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauqan EM, Abdullah A, Sani HA et al (2011) Natural antioxidants, lipid profile, lipid peroxidation, antioxidant enzymes of different vegetable oils. Adv J Food Sci Technol 3:308–316

    CAS  Google Scholar 

  • Deng B, Yang K, Zhang Y et al (2015) The effects of temperature on the germination behavior of white, yellow, red and purple maize plant seeds. Acta Physiol Plant 37(8):1–11

    Article  CAS  Google Scholar 

  • Devi EL, Hossain F, Muthusamy V et al (2017) Microsatellite marker-based characterization of waxy maize inbreds for their utilization in hybrid breeding. 3 Biotech 7:316. https://doi.org/10.1007/s13205-017-0946-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwayo T (2008) Genetic mapping and analysis of traits related to improvement of popcorn. Ph.D. dissertation, Iowa State University, Ames, Iowa

    Google Scholar 

  • Doebley JF (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zang Z, Shi Q et al (2012) Quantitative trait loci mapping and meta-analysis across three generations for popping characteristics in popcorn. J Cereal Sci 56:581–586

    Article  CAS  Google Scholar 

  • Dong H, Li H, Xue Y et al (2021) E183K mutation in Chalcone synthase C2 causes protein aggregation and maize colorless. Front Plant Sci 12:679654. https://doi.org/10.3389/fpls.2021.679654

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley JW (1977) Seventy-six generation of selection for oil and protein percentage in maize. In: Pollak E (ed) Proceedings of international conference on quantitative genetics. Iowa State University Press, Ames, pp 459–473

    Google Scholar 

  • Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  • Dupont J, White PJ, Carpenter MP et al (1990) Food uses and health effects of corn oil. J Am Coll Nutr 9:438–470

    Article  CAS  PubMed  Google Scholar 

  • FAO, IFAD, UNICEF, WFP and WHO (2021) The state of food security and nutrition in the world 2021. In: Transforming food systems for food security, improved nutrition and affordable healthy diets for all. FAO, Rome

    Google Scholar 

  • FAOSTAT (2019) Trade/crops and livestock products. http://www.fao.org/faostat/en/#data/TP

  • FAOSTAT (2020) Trade/crops and livestock products. http://www.fao.org/faostat/en/#data/TP

  • FAS-USDA (2021) Foreign agricultural service-USDA. Office of global analysis. https://ipad.fas.usda.gov

  • Feng ZL, Liu J, Fu FL et al (2008) Molecular mechanism of sweet and waxy in maize. Int J Plant Breed Genet 2:93–100

    Article  CAS  Google Scholar 

  • Feng F, Wang Q, Liang C (2015) Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica 206. https://doi.org/10.1007/s10681-015-1519-8

  • Fisher MB, Boyer C (1983) Immunological characterization of maize starch branching enzymes. Plant Physiol 72:813–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukunaga K, Kawase M, Kato K (2002) Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Mol Genet Genomics 268:214–222

    Article  CAS  PubMed  Google Scholar 

  • Global Hunger Index (2021) Hunger and food systems in conflict settings. Welthungerhilfe/Concern Worldwide, Bonn/Dublin

    Google Scholar 

  • Global Nutrition Report (2018) Shining a light to spur action on nutrition. Development Initiatives, Briston, UK

    Google Scholar 

  • Global Nutrition Report (2020) Action on equity to end malnutrition. Development Initiatives, Bristol, UK

    Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V (2015) Biofortification of maize: an Indian perspective. Indian J Genet 75:1–22

    Article  Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V et al (2019) Marker-assisted breeding for enrichment of provitamin a in maize. In: Qureshi AMI (ed) Quality breeding in field crops. Springer, Basel, pp 139–157

    Chapter  Google Scholar 

  • Hagiwara A, Miyashita K, Nakanishi T et al (2001) Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1, 2-dimethylhydrazine. Cancer Lett 171:17–25

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Parsons C, Alexander D (1987) Nutritive value of high oil corn for poultry. Poult Sci 66:103–111

    Article  CAS  PubMed  Google Scholar 

  • Han N, Li W, Xie C et al (2021) Breeding potential of maize germplasm line GEMS-0067 for high amylose proportion. Preprints. https://doi.org/10.20944/preprints202105.0560.v1

  • Harakotr B, Suriharn B, Tangwongchai R et al (2014) Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. J Functl Food 9:109–118

    Article  CAS  Google Scholar 

  • Hashimoto N, Ito Y, Han KH et al (2006) Potato pulps lowered the serum cholesterol and triglyceride levels in rats. J Nutri Sci Vitaminol 52:445–450

    Article  CAS  Google Scholar 

  • Heinonen IM, Meyer AS, Frankel EN (1998) Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem 46:4107–4112

    Article  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooda S, Kawatra A (2013) Nutritional evaluation of baby corn (Zea mays). Nutri Food Sci 43:68–73

    Article  Google Scholar 

  • Hoseney RC, Zeleznak K, Abdelrahman A (1983) Mechanism of popcorn popping. J Cereal Sci 1:43–52

    Article  Google Scholar 

  • Hossain F, Nepolean T, Vishwakarma AK et al (2015) Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-013-0245-3

  • Hossain F, Chhabra R, Devi EL et al (2019a) Molecular analysis of mutant granule-bound starch synthase-I (waxy1) gene in diverse waxy maize inbreds. 3 Biotech 9:3

    Article  PubMed  Google Scholar 

  • Hossain F, Konsam S, Muthusamy V et al (2019b) Quality protein maize for nutritional security. In: Qureshi AMI et al (eds) Quality breeding in field crops. Springer, Switzerland, pp 217–237. https://doi.org/10.1007/978-3-030-04609-5_11

    Chapter  Google Scholar 

  • Hossain F, Muthusamy V, Zunjare RK, Gupta HS (2019c) Biofortification of maize for protein quality and provitamin-a content. In: Jaiwal PK, Chhillar AK, Chaudhary D, Jaiwal R (eds) Nutritional quality improvement in plants. Springer, pp 115–136. https://doi.org/10.1007/978-3-319-95354-0_5

    Chapter  Google Scholar 

  • Hossain F, Rakshit S, Kumar B et al (2021) Molecular breeding for increasing nutrition quality in maize: recent progress. https://doi.org/10.1079/9781789245431.0021

  • Hossain F, Zunjare R, Muthusamy V et al (2022) Biofortification of maize for nutritional security. https://doi.org/10.1007/978-981-16-3280-8_6

  • Hu L, Zheng Y, Peng Y et al (2016) The optimization of isoamylase processing conditions for the preparation of high-amylose ginkgo starch. Int J Biol Macromol 86:105–111

    Article  CAS  PubMed  Google Scholar 

  • Huang BQ, Tian ML, Zhang JJ et al (2010) Waxy locus and its mutant types in maize (Zea mays L). Agric Sci China 9:1–10

    Article  Google Scholar 

  • Inplean C, Jompuk C, Chai-Aree W et al (2020) Improved sugar content in a sweet corn grain mutant with high quality protein and anthocyanin. Agric Nat Resour 54:553–558

    Google Scholar 

  • Jompuk C, Jitlaka C, Jompuk P et al (2020) Combining three grain mutants for improved quality sweet corn. Agric Environ Lett:5. https://doi.org/10.1002/ael2.20010

  • Jones K (2005) The potential health benefits of purple corn. Herb Gram 65(2):46–49

    Google Scholar 

  • Katral A, Muthusamy V, Zunjare RU et al (2022a) Allelic variation in Zmfatb gene defines variability for fatty acids composition among diverse maize genotypes. Front Nutr 9:845255. https://doi.org/10.3389/fnut.2022.845255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katral AK, Muthusamy V, Hossain F et al (2022b) Enrichment of kernel oil through marker-assisted introgression of dgat1 and fatb genes in elite multi-nutrient rich maize inbreds. 43rd annual meeting of PTCA(I) & international symposium on “advances in plant biotechnology and nutritional security” APBNS-2022, 28–30 Apr 2022

    Google Scholar 

  • Kaur S, Rakshit S, Choudhary M et al (2021) Meta-analysis of QTLs associated with popping traits in maize (Zea mays L.). PLoS One 16(8):e0256389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KN, Fisher DK, Gao M et al (1998) Molecular cloning and characterization of the amylose extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol 38:945–956

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim DN, Lee SH et al (2009) Correlation of fatty acid composition of vegetable oils with rheological behavior and oil uptake. Food Chem 118:398–402

    Article  Google Scholar 

  • Kimura A, Robyt JF (1995) Reaction of enzymes with starch granules; kinetics and products of the reaction with glucoamylase. Carbohydr Res 277:87–107

    Article  CAS  Google Scholar 

  • Kramer HH, Whistler RL, Anderson EG et al (1956) A new gene interaction in the endosperm of maize. Agron J 48:170–172

    Article  Google Scholar 

  • Lago C, Landoni M, Cassani E et al (2013) Study and characterization of a novel functional food: purple popcorn. Mol Breed 31(3):575–585

    Article  CAS  Google Scholar 

  • Lambert RJ (2001) High-oil corn hybrids. In: Hallau AR (ed) Special corn. CRC Press, Boca Raton, pp 131–153

    Google Scholar 

  • Lambert RJ, Alexander D, Mejaya I (2004) Single kernel selection for increased grain oil in maize synthetics and high-oil hybrid development. Plant Breed Rev 24:153–175

    CAS  Google Scholar 

  • Langade DM, Shahi JP, Agrawal VK et al (2013) Maize as emerging source of oil in India: an overview. Maydica 58:224–230

    Google Scholar 

  • Lertrat K, Pulam T (2007) Breeding for increased sweetness in sweet corn. Int J Plant Breed 1:27–30

    Google Scholar 

  • Li YL, Dong YB, Niu SZ (2006) QTL analysis of popping fold and the consistency of QTLs under two environments in popcorn. Acta Genet Sin 33:724–732

    Article  PubMed  Google Scholar 

  • Li Y, Dong Y, Niu S et al (2007) QTL for popping characteristics in popcorn. J Plant Breed 126:509–514

    Article  Google Scholar 

  • Li YL, Dong YB, Niu SZ et al (2008) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351

    Article  Google Scholar 

  • Li Y, Dong Y, Niu S et al (2009) Identification of QTL for popping characteristics using a BC2F2 population and comparison with its F2:3 population in popcorn. Agric Sci China 8(2):137–143

    Article  CAS  Google Scholar 

  • Li L, Li H, Li Q et al (2011) An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS One 6(9):e24699. https://doi.org/10.1371/journal.pone.0024699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Thrash A, Tang JD et al (2019) Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. Plant J 98:853–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li D, Espinosa C et al (2021) Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT’s maize inbred lines. J Exp Bot:72. https://doi.org/10.1093/jxb/eraa480

  • Lin F, Zhou L, He B et al (2019) QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Theor Appl Genet 132:1931–1941

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rong T, Li W (2007) Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Mol Breed 20:93–102

    Article  CAS  Google Scholar 

  • Liu F, Ahmed Z, Lee EA et al (2012) Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. J Exp Bot 63:1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Liversey G (1994) Energy value of resistant starch. Proceedings of the concluding plenary meeting of Euresta, Wageningen, The Netherlands, pp 56–62

    Google Scholar 

  • Lopez HW, Verny MA, Coudray C et al (2001) Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats. J Nutr 131:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Lu W (2012) Effects of protein removal on the physico-chemical properties of waxy maize flours. Starch-Starke 64:874–881

    Article  CAS  Google Scholar 

  • Lu HJ, Bernardo R, Ohm HW (2003) Mapping QTL for popping expansion in popcorn with simple sequence repeat markers. Theor Appl Genet 106:423–427

    Article  CAS  PubMed  Google Scholar 

  • Maki KC, Sanders LM, Reeves MS et al (2009) Beneficial effects of resistant starch on laxation in healthy adults. Int J Food Sci Nutr 60:296–305

    Article  CAS  PubMed  Google Scholar 

  • Malhotra SL (1968) Epidemiological study of cholelithiasis among rail road workers in India. Gut 9:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375(6530):397–400

    Article  CAS  PubMed  Google Scholar 

  • Mazewski C, Liang K, de Mejia EG et al (2017) Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. J Fun Foods 34:254–265

    Article  CAS  Google Scholar 

  • McAuliffe S, Ray S, Fallon E et al (2020) Dietary micronutrients in the wake of COVID-19: an appraisal of evidence with a focus on high-risk groups and preventative healthcare. BMJ Nutr Prev Health 3:93. https://doi.org/10.1136/bmjnph-2020-000100

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta BK, Hossain F, Muthusamy V et al (2017a) Analyzing the role of sowing and harvest time as factors for selecting super sweet (sh2sh2) corn hybrids. Indian J Genet Plant Breed 77:348–356

    Article  Google Scholar 

  • Mehta BK, Hossain F, Muthusamy V et al (2017b) Analysis of responses of novel double mutant (sh2sh2/su1su1) sweet corn hybrids for kernel sweetness under different sowing-and harvest-time. Indian J Agric Sci 87:1543–1548

    CAS  Google Scholar 

  • Mehta B, Hossain F, Muthusamy V et al (2018) Microsatellite-based genetic diversity analyses of sugary1-, shrunken2- and double mutant- sweet corn inbreds for their utilization in breeding programme. Physiol Mol Biol Plants 23(2):411–420

    Article  Google Scholar 

  • Mehta BK, Muthusamy V, Zunjare RU et al (2020a) Biofortification of sweet corn hybrids for provitamin-a, lysine and tryptophan using molecular breeding. J Cereal Sci 96:103093

    Article  CAS  Google Scholar 

  • Mehta BK, Muthusamy V, Baveja A et al (2020b) Composition analysis of lysine, tryptophan and provitamin-a during different stages of kernel development in biofortified sweet corn. J Food Compos Anal 94:103625

    Article  CAS  Google Scholar 

  • Metzger DD, Hsu KH, Ziegler KE et al (1989) Effect of moisture content on popcorn popping volume for oil and hot-air popping. Cereal Chem 66:247–248

    Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N et al (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9. https://doi.org/10.1371/journal.pone.0113583

  • Neeraja CN, Babu VR, Ram S et al (2017) Biofortification in cereals: progress and prospects. Curr Sci 113:1050–1057

    Article  Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, New York, p 63

    Google Scholar 

  • Norberto S, Silva S, Meireles M et al (2013) Blueberry anthocyanins in health promotion: a metabolic overview. J Fun Foods 5:1518–1528

    Article  CAS  Google Scholar 

  • O’Hare TJ, Fanning KJ, Martin IF (2015) Zeaxanthin biofortification of sweet-corn and factors affecting zeaxanthin accumulation and colour change. Arch Biochem Biophys 572:184–187

    Article  PubMed  Google Scholar 

  • Olmos SE, Trejo JM, Percibaldi NM et al (2018) Genetic diversity near the DGAT1-2 gene for high oleic acid content and kernel trait variation in a maize breeding collection. Mol Breed 38:1–15

    Article  CAS  Google Scholar 

  • Pal S, Zunjare RU, Muthusamy V et al (2020) Influence of T-, C- and S- cytoplasms on male sterility and their utilisationin baby corn hybrid breeding. Euphytica 216:146

    Article  CAS  Google Scholar 

  • Parsons L, Ren Y, Yobi A et al (2020) Production and selection of quality protein popcorn hybrids using a novel ranking system and combining ability estimates. Front Plant Sci 11:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons L, Ren Y, Yobi A et al (2021) Final selection of quality protein popcorn hybrids. Front Plant Sci 12:658456

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulsmeyer M, Chatham L, Becker T et al (2017) Survey of anthocyanin composition and concentration in diverse maize germplasms. J Agric Food Chem 65:4341–4350

    Article  CAS  PubMed  Google Scholar 

  • Peniche-Pavia HA, Tiessen A (2020) Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. J Agric Food Chem 68:5980–5994

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S88–S105

    Article  Google Scholar 

  • Prakash NR, Zunjare RU, Muthusamy V et al (2019) Genetic analysis of prolificacy in ‘Sikkim Primitive’-a prolific maize (Zea mays L.) landrace of North-Eastern Himalaya. Plant Breed 138:781–789

    Article  CAS  Google Scholar 

  • Prakash NR, Zunjare RU, Muthusamy V et al (2021) A novel quantitative trait loci governs prolificacy in ‘Sikkim Primitive’ – a unique maize (Zea mays) landrace of North-Eastern Himalaya. Plant Breed 140:400–408

    Article  CAS  Google Scholar 

  • Prasanna BM, Palacios-Rojas N, Hossain F et al (2020) Molecular breeding for nutritionally enriched maize: status and prospects. Front Genet 10. https://doi.org/10.3389/fgene.2019.01392

  • Prasanthi PS, Naveena N, Rao MV et al (2017) Compositional variability of nutrients and phytochemicals in corn after processing. J Food Sci Technol 54(5):1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reader D, Johnson ML, Hollander P et al (1997) Response of resistant starch in a food bar vs. two commercially available bars in persons with type II diabetes mellitus. Diabetes 46:1254A

    Google Scholar 

  • Reddappa SB, Chhabra R, Talukder ZA et al (2022) Development and validation of rapid and cost effective protocol for estimation of amylose and amylopectin in maize kernels. 3 Biotech 12:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Yobi A, Marshall L et al (2018) Generation and evaluation of modified opaque2 popcorn suggests a route to quality protein popcorn. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01803

  • Rhoades MM (1933) The cytoplasmic inheritance of male sterility in Zea mays. J Genet 27:71–93

    Article  Google Scholar 

  • Roberts DM, Lockwood C, Dalbo JV et al (2011) Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition 27:659–665

    Article  CAS  PubMed  Google Scholar 

  • Sami W, Ansari T, Butt NS et al (2017) Effect of diet on type 2 diabetes mellitus: a review. Int J Health Sci 11:65–71

    Google Scholar 

  • Sarika K, Hossain F, Muthusamy V (2018) Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci 272:142–152

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Selinger DA, Chandler VL (1999) A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell 11(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senhorinho H, Coan M, Marino T et al (2019) Genomic-wide association study of popping expansion in tropical popcorn and field corn germplasm. Crop Sci 59:2007. https://doi.org/10.2135/cropsci2019.02.0101

    Article  CAS  Google Scholar 

  • Setchell KD, Aedin C (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S–767S

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Cortes-Cruz M, Ahern KR (2011) Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188(1):69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Allen WB, Zheng P et al (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shende D, Sidhu GK (2014) Methods used for extraction of maize (Zea mays L.) germ oil-a review. Indian J Sci Technol 2:48–54

    Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J et al (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307–327

    Article  Google Scholar 

  • Sidebottom C, Kirkland M, Strongitharm B et al (1998) Characterization of the difference of starch branching enzyme activities in normal and low amylopectin maize during kernel development. J Cereal Sci 27:279–287

    Article  CAS  Google Scholar 

  • Silvi S, Rumney CJ, Cresci A et al (1999) Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J Appl Microbiol 86:521–530

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Vasudev S, Yadava DK et al (2016) Oil improvement in maize: potential and prospects. In: Maize: nutrition dynamics and novel uses 2014. Springer, New Delhi, pp 77–82

    Google Scholar 

  • Singh SP, Neupane MP, Sravan US et al (2019) Nitrogen management in baby corn: a review. Curr J App Sci Technol 34(5):1–11

    Google Scholar 

  • Sinkangam B, Stamp P, Srinives P et al (2011) Integration of quality protein in waxy maize (Zea mays L.) by means of SSR markers. Crop Sci 51:2499–2504

    Article  CAS  Google Scholar 

  • Sprague GF, Brimhall B, Hixon RM (1943) Some effects of the waxy gene in corn on properties of the endosperm starch. J Am Soc Agron 35:817–822

    Article  Google Scholar 

  • Stinard PS, Robertson DS, Schnable RPS (1993) Genetic isolation, cloning, and analysis of a Mutator-induced, dominant antimorph of the maize amylose extender1 locus. Plant Cell 5:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweley JC, Rose DJ, Jackson DS (2011) Composition and sensory evaluation of popcorn flake polymorphisms for a select butterfly-type hybrid. Cereal Chem 88:321–327

    Article  CAS  Google Scholar 

  • Sweley JC, Rose DJ, Jackson DS (2013) Quality traits and popping performance considerations for popcorn (Zea mays Everta). Food Rev Intl 29(2):157–177

    Article  Google Scholar 

  • Tako E, Hoekenga OA, Kochian LV et al (2013) High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). J Nutr 12:3–11

    Article  CAS  Google Scholar 

  • Talukder M, Muthusamy V, Chhabra R et al (2022a) Combining higher accumulation of amylopectin, lysine and tryptophan in maize hybrids through genomics-assisted stacking of waxy1 and opaque2 genes. Sci Rep 12:1. https://doi.org/10.1038/s41598-021-04698-3

    Article  CAS  Google Scholar 

  • Talukder ZA, Muthusamy V, Chhabra R et al (2022b) Enrichment of amylopectin in sub-tropically adapted maize hybrids through genomics-assisted introgression of waxy1 gene encoding granule-bound starch synthase (GBSS). J Cereal Sci 105:103443. https://doi.org/10.1016/j.jcs.2022.103443

    Article  CAS  Google Scholar 

  • Talukder ZA, Muthusamy V, Zunjare RU, Chhabra R, Reddappa SB, Mishra SJ, Prakash NR, Gain N, Chand G, Hossain F (2022c) Pollen staining is a rapid and cost-effective alternative to marker-assisted selection for recessive waxy1 gene governing high amylopectin in maize. Physiol Mol Biol Plants 28:1753–1764

    Google Scholar 

  • Thakur S, Kumar R, Vikal Y et al (2021) Molecular mapping of popping volume QTL in popcorn (Zea maize L.). J Plant Biochem Biotechnol 30:1–8. https://doi.org/10.1007/s13562-020-00636-y

    Article  CAS  Google Scholar 

  • Topping DL, Anthony MF, Bird F (2003) Resistant starch as prebiotic and synbiotic: state of the art. Proc Nutr Soc 62:171–176

    Article  CAS  PubMed  Google Scholar 

  • Toufektsian MC, De Lorgeril M, Nagy N et al (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138:747–752

    Article  CAS  PubMed  Google Scholar 

  • Trujillo EE, Castillo MDCM, Gonzalez FC et al (2009) Anthocyanin accumulation in pericarp and aleurone layer of maize kernel and their genetic effects on native pigmented varieties. Rev Fiotec Mex 32:303–309

    Google Scholar 

  • Val LD, Schwartz SH, Kerns MR et al (2009) Development of a high oil trait for maize. In: Molecular genetic approaches to maize improvement. Springer, Berlin, pp 303–323

    Chapter  Google Scholar 

  • Vann L, Kono T, Pyhajarvi T et al (2015) Natural variation in teosinte at the domestication locus teosinte branched1 (tb1). Peer J 3:e900

    Google Scholar 

  • Vineyard ML, Bear HP (1952) Amylose content. Maize Genet Coop Newsl 26:5

    Google Scholar 

  • Wang W, Niu S, Dai Y et al (2019) Molecular mechanisms underlying increase in lysine content of waxy maize through the introgression of the opaque2 allele. Int J Mol Sci 20:684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber EJ (1987) Lipids of the kernel. In: Watson SA, Ramsted PE (eds) Corn: chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 311–349

    Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 267–276

    Chapter  Google Scholar 

  • Wessler S, Baran G, Varagona M et al (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J 5:2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Weber EJ (2003) Lipids of the kernel. In: White PJ, Johnson LA (eds) Corn: chemistry and technology, 2nd, vol 10. American Association of Cereal Chemists Inc, St. Paul, pp 355–395

    Google Scholar 

  • Wills DM, Whipple CJ, Takuno S et al (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9. https://doi.org/10.1038/362417a0

  • Xiao Y, Yu Y, Li G (2020) Genome-wide association study of vitamin E in sweet corn kernels. Crop J 8:341. https://doi.org/10.1016/j.cj.2019.08.002

    Article  Google Scholar 

  • Yadava DK, Hossain F, Mohapatra T (2018) Nutritional security through crop biofortification in India: status & future prospects. Indian J Med Res 148:621–631. https://doi.org/10.4103/ijmr.IJMR_1893_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadava DK, Hossain F, Choudhury PR et al (2022) Biofortified varieties: sustainable way to alleviate malnutrition, 4th edn. Indian Council of Agricultural Research, New Delhi, p 106

    Google Scholar 

  • Yang X, Guo Y, Yan J et al (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet 120:665–678

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang M, Wang W et al (2013) Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using crosses and backcross schemes. Mol Breed 31:767–775

    Article  Google Scholar 

  • Yang Y, Xiao H, McClements DJ (2017) Impact of lipid phase on the bioavailability of vitamin-E in emulsion-based delivery systems: relative importance of bioaccessibility, absorption, and transformation. J Agric Food Chem 65:3946–3955

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Yan Z, Wang Q et al (2018) Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn. Euphytica 214:130

    Article  Google Scholar 

  • Yangcheng H, Jiang H, Blanco M et al (2013) Characterization of normal and waxy corn starch for bioethanol production. J Agric Food Chem 61:379–386

    Article  CAS  PubMed  Google Scholar 

  • Yodpet C (1979) Studies on sweet corn as potential young cob corn (Zea mays L.). Ph.D. thesis. University of the Philippines, Philippines

    Google Scholar 

  • Yu WZ, Sun SL, Zhou DQ et al (1993) An elite maize cultivar for baby corn. Chin Veg 6:52

    Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WL, Yang WP, Wang MC et al (2013) Increasing lysine content of waxy maize through introgression of opaque-2 and opaque-16 genes using molecular assisted and biochemical development. PLoS One 8:e56227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Allen WB, Roesler K (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Babar MD, Parthasarathy S et al (2014) A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil. Theor Appl Genet 127:1537–1547

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Song L, Zhang Li X et al (2016) Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One. https://doi.org/10.1371/journal.pone.0158971

  • Zunjare R, Hossain F, Muthusamy V (2015) Popping quality attributes of popcorn hybrids in relation to weevil (Sitophilus oryzae) infestation. Indian J Genet 75:510–513

    Article  CAS  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V et al (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε cyclase and opaque2 genes. Front Plant Sci 9:178. https://doi.org/10.3389/fpls.2018.00178

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, F. et al. (2023). Genetic Improvement of Specialty Corn for Nutritional Quality Traits. In: Wani, S.H., Dar, Z.A., Singh, G.P. (eds) Maize Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-21640-4_11

Download citation

Publish with us

Policies and ethics