Skip to main content

Temporal Prediction of Groundwater Levels: A Gap in Generalization

  • Chapter
  • First Online:
Impacts of Urbanization on Hydrological Systems in India

Abstract

Groundwater serves the significant demand created by the human ecosystem across the globe. In this scenario, primary dependence on the groundwater scenario, the prediction of its availability will be valuable information for the stakeholders. Researchers in the current decade have widely used the prediction of the resources based on the available/historical database. Above made researchers generalize the selection models depending on the domain of study (application domain). In the generalization process, the introduction of risk towards dependability on the predicted outputs has been increased. This study tries to identify the performance of two well-known predictive algorithms, which have their footprints both in data-driven, and data mining models, namely, (a) artificial neural network (ANN) and (b) support vector machine (SVM). The performance analysis has been performed to understand the impact of neurons in ANN and Kernel functions in cases of SVM. The developed framework is allowed to explore three well locations in the same basin to explicitly show the performance of the algorithms. The prediction capability is measured in Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE). The results inferred that even though the study groundwater wells are pertaining to the same basin (where climate and lithology are almost similar), the algorithms may not be generalized for the domain application. The above observation may be due to the draft and land use pattern variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsmadi, M. K. S., Omar, K. B., & Noah, S. A. (2009). Back propagation algorithm: The best algorithm among the multilayer perceptron algorithm. IJCSNS International Journal of Computer Science and Network Security, 9(4).

    Google Scholar 

  • Banerjee, P., Singh, V. S., Chattopadhyay, K., Chandra, P. C., & Singh, B. (2011). Artificial neural networkmodel as a potential alternative for groundwatersalinity forecasting. Journal of Hydrology, 398(2011), 212–220.

    Article  ADS  CAS  Google Scholar 

  • Barzegar, R., & Asghari Moghaddam, A. (2016). Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment, 2(1), 1–13. https://doi.org/10.1007/s40808-015-0072-8

    Article  Google Scholar 

  • Behzad, M., Asghari, K., & Coppola, E. A. (2010). Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering, 24(5), 408–413. https://doi.org/10.1061/(asce)cp.1943-5487.0000043

    Article  Google Scholar 

  • Chang, J., Wang, G., & Mao, T. (2015). Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology, 529, 1211–1220. https://doi.org/10.1016/j.jhydrol.2015.09.038

    Article  ADS  Google Scholar 

  • Chang, D., Zhang, F. (2016). Resolving temporal variations in data-driven fow models constructed by motion tomography. In: IFAC-Papers OnLine, vol. 49, pp. 182–187. Elsevier, Amsterdam

    Google Scholar 

  • Cui, Y., Sachdev, P. S. Lipnicki, D. M., Jin, J. S., Luo, S., Zhu, W., Kochan, N. A. Reppermund, S., Liu, T., Trollor, J. N. Brodaty, H., & Wen, W. (2012). Predicting the development of mild cognitive impairment: A new use of pattern recognition, NeuroImage, 60(2), 894–901. ISSN 1053–8119, https://doi.org/10.1016/j.neuroimage.2012.01.084.

  • Daliakopoulos, I. N., Coulibaly, P., & Tsani, I. K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309(2005), 229–240.

    Article  ADS  Google Scholar 

  • Dash, N. B., Panda, S. N., Remesan, R., & Sahoo, N. (2010). Hybrid neural modeling for groundwater level prediction. Neural Computing and Applications, 19(8), 1251–1263. https://doi.org/10.1007/s00521-010-0360-1

    Article  Google Scholar 

  • Ghasemi, H., Malek-Mohammadi, M., Babaie-Zadeh, M., Jutten C., (2011). SRF: Matrix Completion Based on Smoothed Rank Function. ICASSP 2011 - IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic. pp.3672–3675. ffhal-00596777

    Google Scholar 

  • Gong, Y., Lan, Y. S., & Wang, H. (2016). A comparative study of artificial neural networks, support vector machines and adaptive neuro-fuzzy inference system for forecasting groundwater levels Lake near Lake Okeechobee, Florida. Water Resource Management, 30, 375–391.

    Article  Google Scholar 

  • Hicham, El Badaoui & Abdelaziz, Abdallaoui & Samira, Chabaa. (2013). Using MLP neural networks for predicting global solar radiation. The International Journal of Engineering and Science (IJES). 2. 48–56.

    Google Scholar 

  • Hughes, L., Dwivedi, Y. K., Misra, S. K., Rana, N. P., Raghavan, V., & Akella, V. (2019). Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. International Journal of Information Management, 49(February), 114–129. https://doi.org/10.1016/j.ijinfomgt.2019.02.005

    Article  Google Scholar 

  • Isa, I. S., Saad, Z. S., Omar, S., Osman, M. K., Ahmad, K. A., & Sakim, H. A. M. (2010). Suitable MLP network activation functions for breast cancer and thyroid disease detection. In Second international conference on computational intelligence, modelling and simulation, 978-0-7695-4262-1/10 $26.00 © 2010 IEEE, https://doi.org/10.1109/CIMSiM.2010.93

  • Khan, M. S., & Coulibaly, P. (2006). Application of support vector machine in Lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199–205.

    Article  Google Scholar 

  • Haykin, S. S. (1999). Neural Networks: A Comprehensive Foundation, PrinticeHall Inc., NJ, USA.

    Google Scholar 

  • Liu, L., Shen, B., & Wang, X. (2014). Research on kernel function of support vector machine. Journal of Computers, 25(1).

    Google Scholar 

  • Mohan, S., & Ramsundram, N. (2016). Predictive temporal data-mining approach for evolving knowledge-based reservoir operation rules. Water Resources Management, 30, 3315. https://doi.org/10.1007/s11269-016-1351-5

    Article  Google Scholar 

  • Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31(9), 2761–2775. https://doi.org/10.1007/s11269-017-1660-3

    Article  Google Scholar 

  • Natarajan, N., & Sudheer, C. (2020). Groundwater level forecasting using soft computing techniques. Neural Computing and Applications, 32(12), 7691–7708. https://doi.org/10.1007/s00521-019-04234-5

    Article  Google Scholar 

  • Osowskil, S., Siwek, K., & Markiewicz, T. (2004). MLP and SVM networks – A comparative study. In Proceedings of the 6th Nordic signal processing symposium – NORSIG 2004, IEEE, June 2004.

    Google Scholar 

  • Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 3(2), 332–337.

    Article  Google Scholar 

  • Patel, M. B., & Yalamalle, S. R. (2014). Stock Price prediction using artificial neural network. International Journal of Innovative Research in Science, Engineering and Technology, 3(6) ISSN: 2319-8753.

    Google Scholar 

  • Pecli, A., Giovanini, B., Pacheco C. C., Moreira, C., Ferreira, F., Tosta, F., Tesolin J., et al. (2015). Dimensionality Reduction for Supervised Learning in Link Prediction Problems. In ICEIS (1), pp. 295–302.

    Google Scholar 

  • Raheja, H., Goel, A., & Pal, M. (2021). Modeling of water quality index of Haryana: A comparison of deep neural network and support vector machine. In 1st international online conference on Sustainable Development in Civil and Electrical Engineering (SDCEE-2021), National Institute of Technology, 17–19 December, 2021.

    Google Scholar 

  • Safavi, H. R., Darzi, F., & Mariño, M. A. (2010). Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resources Management, 24(10), 1965–1988. https://doi.org/10.1007/s11269-009-9533-z

    Article  Google Scholar 

  • Salem, G. S. A., Kazama, S., Shahid, S., & Dey, N. C. (2017). Impact of temperature changes on groundwater levels and irrigation costs in a groundwater-dependent agricultural region in Northwest Bangladesh. Hydrological Research Letters, 11(1), 85–91. https://doi.org/10.3178/HRL.11.85

    Article  ADS  Google Scholar 

  • Sakr, S. et al. (2011). A survey of large scale data management approaches in cloud environments. IEEE communications surveys & tutorials 13(3), 311–336.

    Google Scholar 

  • Tsanis, I. K., Paulin C. and Ioannis N. D., “Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation.” Journal of Hydroinformatics 10.4 (2008): 317–330.

    Google Scholar 

  • Uestuen, B., Melssen, W. J., Buydens, L. M. C., (2006). Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemometrics and Intelligent Laboratory Systems 81(1), 29–40.

    Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Muley, A. A., Mukate, S. V., Lolage, Y. P., & Aamalawar, M. L. (2016). Prediction of groundwater suitability for irrigation using artificial neural network model: A case study of Nanded tehsil, Maharashtra, India. Modeling Earth Systems and Environment, 2(4), 1–10. https://doi.org/10.1007/s40808-016-0250-3

    Article  Google Scholar 

  • Xu, T., Valocchi, A. J., Choi, J., & Amir, E. (2014). Use of machine learning methods to reduce predictive error of groundwater models. Groundwater, 52(3), 448–460. https://doi.org/10.1111/gwat.12061

    Article  CAS  Google Scholar 

  • Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396(1–2), 128–138. ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2010.11.002

  • Zhou, T., Wang, F., & Yang, Z. (2017). Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. Water (Switzerland), 9(10). https://doi.org/10.3390/w9100781

Download references

Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ramsundram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramsundram, N., Sattari, M.T., Kaviya, R., Kaarthic, M., Niveditha, M. (2023). Temporal Prediction of Groundwater Levels: A Gap in Generalization. In: Thambidurai, P., Dikshit, A.K. (eds) Impacts of Urbanization on Hydrological Systems in India. Springer, Cham. https://doi.org/10.1007/978-3-031-21618-3_11

Download citation

Publish with us

Policies and ethics