Skip to main content

Microstructure Peculiarities and Electromechanical Properties of Porous Piezoceramics

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications

Abstract

In this paper, a comprehensive study of microstructure peculiarities and electromechanical properties of porous piezoceramics based on PZT compositions was performed. Experimental samples of porous piezoceramics were fabricated using a modified method of burning-out a pore formers. Porosity dependencies of elastic, dielectric, and electromechanical parameters of the porous piezoceramics in the relative porosity range of 0–50% were measured and analyzed. Full set of complex constants of porous ceramics with different porosity and their frequency dependences were measured using the piezoelectric resonance analysis method. The microstructural and physical mechanisms of elastic losses and dispersion in porous piezoceramics were considered. In conclusion, microstructure/properties interrelations, as well as new applications of porous piezoceramics were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Topolov V, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  2. Newton A (2017) Advances in porous ceramics. Nova Science Publishers, NY

    Google Scholar 

  3. Shvetsova NA, Petrova EI, Lugovaya MA, Marakhovsky MA, Bryl OE, Rybyanets AN (2022) Ferroelectrics 591(1):143. https://doi.org/10.1080/00150193.2022.2041932

    Article  CAS  Google Scholar 

  4. Rybyanets AN (2011) Ferroelectrics 419(1):90. https://doi.org/10.1080/00150193.2011.594751

    Article  CAS  Google Scholar 

  5. Wight J (2005) Cellular ceramics—structure, manufacturing, properties and applications. Wiley-VCH, Weinheim

    Google Scholar 

  6. Rybyanets AN (2010) In: Parinov IA (ed)Piezoceramic materials and devices, vol 113. Nova Science Publishers, NY

    Google Scholar 

  7. Rybyanets AN (2011) IEEE Trans Ultrason Ferroelectr Freq Control 58:1492. https://doi.org/10.1109/TUFFC.2011.1968

    Article  Google Scholar 

  8. Rybyanets AN, Makarev DI, Shvetsova NA (2019) Ferroelectrics 539(1):101. https://doi.org/10.1080/00150193.2019.1570019

    Article  CAS  Google Scholar 

  9. Pabst W, Gregorova E, Uhlifova T (2017) Processing, microstructure, properties, applications and curvature-based classification schemes of porous ceramics. Nova Science Publishers, NY

    Google Scholar 

  10. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) J Am Ceram Soc 89:1771

    Article  CAS  Google Scholar 

  11. Lee SH, Jun SH, Kim HE, Koh YH (2007) J Am Ceram Soc 90:2807

    Article  CAS  Google Scholar 

  12. Rybyanets AN (2017) Advances in porous ceramics. Nova Science Publishers Inc., NY

    Google Scholar 

  13. Shvetsova NA, Shvetsov IA, Lugovaya MA, Petrova EI, Rybyanets AN (2022) J Adv Dielectr 12(2):2160006. https://doi.org/10.1142/S2010135X21600067

    Article  CAS  Google Scholar 

  14. Bale A, Rouffaud R, Hladky-Hennion A-C, Marchet P, Levassort F (2019) IEEE Trans Ultrason Ferroelectr Freq Control 66(5), 8638828, 949. https://doi.org/10.1109/TUFFC.2019.2898519

  15. Zeng T, Dong X, Mao C, Zhou Z, Yang H (2007) J Eur Ceram Soc 27:2025

    Article  CAS  Google Scholar 

  16. Rybyanets AN, Naumenko AA, Lugovaya MA, Shvetsova NA (2015) Ferroelectrics 484(1):95

    Article  CAS  Google Scholar 

  17. Ringgaard E, Lautzenhiser F, Bierregaard LM, Zawada T, Molz E (2015) Materials 8(12):8877. https://doi.org/10.3390/ma8125498

    Article  CAS  Google Scholar 

  18. Shvetsov IA et al (2022) J Adv Dielectr 12(2):2160004–2160011. https://doi.org/10.1142/s2010135x21600043

    Article  CAS  Google Scholar 

  19. IEEE Standard on Piezoelectricity (1987) ANSI/IEEE Std. 176

    Google Scholar 

  20. PRAP (Piezoelectric Resonance Analysis Program). TASI Technical Software Inc. www.tasitechnical.com

  21. Lugovaya MA, Naumenko AA, Rybyanets AN, Shcherbinin SA (2015) Ferroelectrics 484(1):87. https://doi.org/10.1080/00150193.2015.1059723

    Article  CAS  Google Scholar 

  22. Rybianets A, Kushkuley L, Eshel Y, Nasedkin A (2006) Proc IEEE Ultrason Symp 1(4152245):1533. https://doi.org/10.1109/ULTSYM.2006.389

    Article  Google Scholar 

  23. Hudai K, Rajamami R, Stevens R, Bowen CR (2003) IEEE Trans. UFFC 50(3):289

    Article  Google Scholar 

  24. Rybianets AN, Tasker R (2007) Ferroelectrics 360(1):90. https://doi.org/10.1080/00150190701516228

  25. O’Donnell M, Jaynes ET, Miller JG (1978) J Acoust Soc Am 63:1935. https://doi.org/10.1121/1.381902

    Article  Google Scholar 

  26. Rybyanets AN, Naumenko AA, Konstantinov GM, Shvetsova NA, Lugovaya MA (2015) Phys Solid State 57(3):558. https://doi.org/10.1134/S1063783415030269

    Article  CAS  Google Scholar 

  27. Uchino K, Hirose S (2001) IEEE UFFC 48:307. https://doi.org/10.1109/58.896144

    Article  CAS  Google Scholar 

  28. Lugovaya MA, Shvetsov IA, Shvetsova NA, Nasedkin AV, Rybyanets AN (2021) Ferroelectrics 571(1):263. https://doi.org/10.1080/00150193.2020.1736909

    Article  CAS  Google Scholar 

  29. Rybyanets AN (2012) In: Parinov IA (ed) Piezoelectrics and related materials: investigations and applications, vol 143. Nova Science Publishers, New York

    Google Scholar 

  30. Rybianets A, Eshel Y, Kushkuley L (2006) Proceedings of the IEEE Ultrasonics Symposium IUS, vol 9474540. 1911. https://doi.org/10.1109/ULTSYM.2006.480

Download references

Acknowledgement

The study was financially supported by the Russian Science Foundation, grant No. 22-11-00302, https://rscf.ru/project/22-11-00302/ at the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey N. Rybyanets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shvetsova, N.A., Shvetsov, I.A., Petrova, E.I., Nasedkin, A.V., Rybyanets, A.N. (2023). Microstructure Peculiarities and Electromechanical Properties of Porous Piezoceramics. In: Parinov, I.A., Chang, SH., Soloviev, A.N. (eds) Physics and Mechanics of New Materials and Their Applications. Springer Proceedings in Materials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-031-21572-8_15

Download citation

Publish with us

Policies and ethics