Skip to main content

A Deep Dive into CORDIC Architectures to Implement Trigonometric Functions

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Abstract

Coordinate Rotation Digital Computer (CORDIC) Algorithms provide an area efficient way to implement complex mathematical functions. This algorithm remains relevant to this day where trigonometric functions are used repetitively. CORDIC algorithms are used in various stages of signal processing applications and robotics. A deep dive into the concept and implementation of three types of the algorithm are presented in this paper. A comparison of three versions of the CORDIC Algorithm, viz. rotation mode-Basic CORDIC, Scale Free CORDIC, and Redundant CORDIC, is made in terms of power, area, and speed. The three algorithms are modeled in Verilog HDL and then implemented with Xilinx Vivado. The performance metrics are compared using Synopsys Design Vision tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volder, J. The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. EC-8, 330–334 (1959)

    Google Scholar 

  2. Maharatna, K., Banerjee, S., Grass, E., Krstic, M., Troya, A.: Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture. IEEE Trans. Circuits Syst. Video Technol. 15, 1463–1474 (2005)

    Google Scholar 

  3. Hu, X., Harber, R., Bass, S.: Expanding the range of convergence of the CORDIC algorithm. IEEE Trans. Comput. 40, 13–21 (1991)

    Article  Google Scholar 

  4. Noll, T.: Carry-save arithmetic for high-speed digital signal processing. In: IEEE International Symposium on Circuits and Systems

    Google Scholar 

  5. Avizienis, A.: Signed-digit numbe representations for fast parallel arithmetic. IEEE Trans. Electron. Comput. EC-10, 389–400 (1961)

    Google Scholar 

  6. Atkins, D.: Introduction to the Role of Redundancy in Computer Arithmetic. Computer 8, 74–77 (1975)

    Google Scholar 

  7. Parhami, B.: Generalized signed-digit number systems: a unifying framework for redundant number representations. IEEE Trans. Comput. 39, 89–98 (1990)

    Article  Google Scholar 

  8. Parhami, B.: Carry-free addition of recoded binary signed-digit numbers. IEEE Trans. Comput. 37, 1470–1476 (1988)

    Article  MATH  Google Scholar 

  9. Sacks-Davis, R.: Applications of redundant number representations to decimal arithmetic. Comput. J. 25, 471–477 (1982)

    Google Scholar 

  10. Kuninobu, S., Nishiyama, T., Edamatsu, H., Taniguchi, T., Takagi, N.: Design of high speed MOS multiplier and divider using redundant binary representation. In: 1987 IEEE 8th Symposium On Computer Arithmetic (ARITH) (1987)

    Google Scholar 

  11. Jedwab, J., Mitchell, C.: Minimum weight modified signed-digit representations and fast exponentiation. Electron. Lett. 25, 1171 (1989)

    Article  MATH  Google Scholar 

  12. Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor for sine and cosine computation. IEEE Trans. Comput. 40, 989–995 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramani, N., Mondal, S. (2022). A Deep Dive into CORDIC Architectures to Implement Trigonometric Functions. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics