Skip to main content

QCA Technology Based 8-Bit TRNG Design for Cryptography Applications

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1687))

Included in the following conference series:

  • 741 Accesses

Abstract

Hardware Security is very important considering the extensive usage of hardware devices and data security. In this paper, the structure of a hardware security primitives namely the True Random Number Generator (TRNG) is proposed using Quantum Cellular Automata (QCA) technology. The AND gate, XOR gate and a gate with irregular behavior are used to generate random output depending upon the metastability of the QCA structure. Furthermore, the structure is cross looped and asymmetrically inverted for extra randomness. The energy calculations of the structure were performed using QCA Designer Pro and the randomness of the output was tested in the NIST Test Suite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, V., Agrawal, S., Deshmukh, R.K.: Analysis and review of encryption and decryption for secure communication. Int. J. Sci. Eng. Res. 2(2), 2347–3878 (2014)

    Google Scholar 

  2. Hedayatpour, S., Chuprat, S.: Random number generator based on transformed image data source. In: Advances in Computer, Communication, Control and Automation, pp. 457–464. Springer (2011). https://doi.org/10.1007/978-3-642-25541-0_58

  3. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(10), 1200–1205 (2005)

    Google Scholar 

  4. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up sram state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Laajimi, R., Ajimi, A., Touil, L., Bahar, A.N.: A novel design for xor gate used for quantum-dot cellular automata (QCA) to create a revolution in nanotechnology structure. Int. J. Adv. Comput. Sci. Appl. 8(10), 279–287 (2017)

    Google Scholar 

  6. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  7. Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)

    Article  Google Scholar 

  8. Sarkar, T.: Design of dflip-flip using nano-technology based quantum cellular automata. Int. J. Soft Computi. Eng. (IJSCE) 3, 56 (2013)

    Google Scholar 

  9. Ennesser, F., Ganem, H.: Establishing security in machine-to-machine (m2m) communication devices and services. In: Machine-to-machine (M2M) Communications, pp. 227–248. Elsevier (2015)

    Google Scholar 

  10. Pain, P., Das, K., Sadhu, A., Kanjilal, M.R., De, D.: Novel true random number generator based hardware cryptographic architecture using quantum-dot cellular automata. Int. J. Theor. Phys. 58(9), 3118–3137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  12. Das, K., De, D., De, M.: Competent universal reversible logic gate design for quantum dot cellular automata. WSEAS Trans. Circ. Syst. 11, 401–411 (2012)

    Google Scholar 

  13. Angizi, S., Sayedsalehi, S., Roohi, A., Bagherzadeh, N., Navi, K.: Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops. J. Circ. Syst. Comput. 24(10), 1550153 (2015)

    Article  Google Scholar 

  14. Mehta, U., Dhare, V.: Quantum-dot cellular automata (QCA): A survey. arXiv preprint arXiv:1711.08153 (2017)

  15. Sadhu, A., Das, K., De, D., Kanjilal, M.R.: MVTRNG: majority voter-based crossed loop quantum true random number generator in QCA nanotechnology. In: Maharatna, K., Kanjilal, M.R., Konar, S.C., Nandi, S., Das, K. (eds.) Computational Advancement in Communication Circuits and Systems. LNEE, vol. 575, pp. 241–253. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8687-9_22

    Chapter  Google Scholar 

  16. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  17. Welland, M.E., Gimzewski, J.K.: Ultimate Limits of Fabrication and Measurement, vol. 292. Springer Science & Business Media (2012)

    Google Scholar 

  18. Niu, X., Wang, Y., Wu, D.: A method to generate random number for cryptographic application. In: 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 235–238. IEEE (2014)

    Google Scholar 

  19. Smid, E.B., Leigh, S., Levenson, M., Vangel, M., DavidBanks, A., JamesDray, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Her research interest includes Computer security, secure operating systems, Access control, Distributed systems, Intrusion detection systems (2010)

    Google Scholar 

  20. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Tech. rep, Booz-allen and hamilton inc mclean va (2001)

    Google Scholar 

  21. Kim, S.J., Umeno, K., Hasegawa, A.: Corrections of the Nist statistical test suite for randomness. arXiv preprint nlin/0401040 (2004)

    Google Scholar 

  22. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: Qcapro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377–2380. IEEE (2011)

    Google Scholar 

  23. Abutaleb, M.: A novel true random number generator based on QCA nanocomputing. Nano Commun. Netw. 17, 14–20 (2018)

    Article  Google Scholar 

  24. Pain, P., Das, K., Sadhu, A., Kanjilal, M.R., De, D.: Power analysis attack resistable hardware cryptographical circuit design using reversible logic gate in quantum cellular automata. Microsyst. Technol, 1–13 (2019)

    Google Scholar 

  25. Sadhu, A., Das, K., De, D., Kanjilal, M.R.: SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata. Microsyst. Technol. 26(7), 2203–2215 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the SERB, Government of India for providing financial support under the Startup Research Grant Scheme with grant no. SRG/2021/001101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambika Prasad Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinha, P., Sharma, A., Naharas, N., Naz, S.F., Shah, A.P. (2022). QCA Technology Based 8-Bit TRNG Design for Cryptography Applications. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics