Skip to main content

ECR–Driven Negative Ion Sources Operating with Hydrogen and Deuterium

  • Chapter
  • First Online:
Physics and Applications of Hydrogen Negative Ion Sources

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 124))

  • 349 Accesses

Abstract

This chapter is devoted to the fundamental principles of electron cyclotron resonance (ECR) sources yielding H and D negative ions. Initially, it provides a brief but meaningful overview of the theoretical framework for ECR plasmas along with commonly employed experimental configurations, unveiling thus the distinct features of this special category of high-frequency electrical discharges. It is highlighted that it is not aimed to cover the vast field of microwave discharges (e.g., microwave discharges in waveguides and resonators), nor the vast field of wave-heated discharges (e.g., helicon discharges and surface wave discharges). Such an attempt would be a utopia within the frame of one book chapter. Therefore, Sect. 12.1 of this chapter presents elementary physical quantities of plasmas, related to the ECR idea, and an idealized, simplified concept of the complex wave propagation in ECR plasmas where the wave energy absorption is achieved through collision-less heating mechanism (Firdman and Kennedy, Plasma physics and engineering. New York: Taylors & Francis Books Inc., 2004; Williamson et al., J. Appl. Phys. 72:3924, 1992). The presentation concerns low-pressure, nonthermal, and nonequilibrium plasmas. Then, the core of this review is devoted to the targeted application of ECR heating to negative ion sources operating with molecular hydrogen (H2) and deuterium (D2). Once again, the relatively vast field is impossible to be treated in the context of this chapter, but the authors hope that the cited sources are worthy representatives. Fundamental processes governing the H and D ion production (destruction) are summarized in Sect. 12.2, while the extended Sect. 12.3 provides recent experimental results from ECR-driven sources and comments on them in detail. Diagnostic techniques applicable to these sources are also mentioned at the beginning of Sect. 12.3. This chapter closes with Sect. 12.4, where additional ECR sources are touched upon and negative ion-extracted currents from different sources are compared. The review is throughout supported by future-proof classic or up-to-date bibliography for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Aleiferis, O. Tarvainen, P. Svarnas, M. Bacala, S. Béchu, Experimental investigation of the relation between H negative ion density and Lyman-α emission intensity in a microwave discharge. J. Phys. D. Appl. Phys. 49, 095203 (2016)

    Article  ADS  Google Scholar 

  • S. Aleiferis, P. Svarnas, S. Béchu, O. Tarvainen, M. Bacal, Production of hydrogen negative ions in an ECR volume source: Balance between vibrational excitation and ionization. Plasma Sources Sci. Technol. 27, 075015 (2018)

    Article  ADS  Google Scholar 

  • J. Asmussen, P. Mak, Control of multipolar electron cyclotron resonance discharges using internal cavity impedance matching. Rev. Sci. Intrum. 67, 1753 (1994)

    Article  ADS  Google Scholar 

  • M. Bacal, F. Hillion, M. Nachman, Extraction of volume-produced H ions. Rev. Sci. Intsrum. 56, 649 (1985)

    Article  ADS  Google Scholar 

  • M. Bacal, Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas. Rev. Sci. Instrum. 71, 3981 (2000)

    Article  ADS  Google Scholar 

  • M. Bacal, A.A. Ivanov Jr., M. Glass-Maujean, Y. Matsumoto, M. Nishiura, M. Sasao, M. Wada, Contribution of wall material to the vibrational excitation and negative ion formation in hydrogen negative ion sources. Rev. Sci. Instrum. 75, 1699 (2004)

    Article  ADS  Google Scholar 

  • M. Bacal, Physics aspects of negative in sources. Nucl. Fusion 46, S250 (2006)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Wada, Negative hydrogen ion production mechanisms. Appl. Phys. Rev. 2, 021305 (2015)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Wada, Negative ion source operation with deuterium. Plasma Sources Sci. Technol. 29, 033001 (2020)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Sasao, M. Wada, Negative ion sources. J. Appl. Phys. 129, 221109 (2021)

    Article  ADS  Google Scholar 

  • J.N. Bardsley, J.M. Wadehra, Dissociative attachment and vibrational excitation in low-energy collisions of electrons with H2 and D2. Phys. Rev. A 20, 1398 (1979)

    Article  ADS  Google Scholar 

  • R.J. Baxter, P. Hu, Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116, 4379 (2002)

    Article  ADS  Google Scholar 

  • S. Béchu, A. Soum-Glaude, A. Bes, A. Lacoste, P. Svarnas, S. Aleiferis, A.A. Jr Ivanov, M. Bacal, Multi-dipolar microwave plasmas and their application to negative ion production. Phys. Plasmas 20, 101601 (2013)

    Article  ADS  Google Scholar 

  • S. Béchu, S. Aleiferis, J. Bentounes, L. Gavilan, V.A. Shakhatov, A. Bès, P. Svarnas, S. Mazouffre, N. de Oliviera, R. Engeln, J.L. Lemaire, Detection of rovibrationally excited molecular hydrogen in the electronic ground state via synchrotron radiation. Appl. Phys. Lett. 111, 074103 (2017)

    Article  ADS  Google Scholar 

  • S. Béchu, J.L. Lemaire, L. Gavilan, S. Aleiferis, V. Shakhatov, Y.A. Lebedev, D. Fombaron, L. Bonny, J. Menu, A. Bès, P. Svarnas, N. de Oliveira, Direct measurements of electronic ground state ro-vibrationally excited D2 molecules produced on ECR plasma-facing materials by means of VUV-FT absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 257, 107325 (2020)

    Article  Google Scholar 

  • J. Bentounes, S. Béchu, F. Biggins, A. Michau, L. Gavilan, J. Menu, L. Bonny, D. Fombaron, A. Bès, A. Lebedev Yu, V.A. Shakhatov, P. Svarnas, T. Hassaine, J.L. Lemaire, A. Lacoste, Effects of the plasma-facing materials on the negative ion H density in an ECR (2.45 GHz) plasma. Plasma Sources Sci. Technol. 27, 055015 (2018)

    Article  ADS  Google Scholar 

  • M. Cacciatore, M. Rutigliano, The semiclassical and quantum-classical approaches to elementary surface processes: Dissociative chemisorption and atom recombination on surfaces. Phys. Scr. 78, 058115 (2008)

    Article  ADS  Google Scholar 

  • M. Cacciatore, M. Rutigliano, Dynamics of plasma–surface processes: E–R and L–H atom recombination reactions. Plasma Sources Sci. Technol. 18, 023002 (2009)

    Article  ADS  Google Scholar 

  • M. Capitelli, M. Cacciatore, R. Celiberto, O. De Pascale, P. Diomede, F. Esposito, A. Gicquel, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, D. Pagano, M. Rutigliano, Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects. Nucl. Fusion 46, S260 (2006)

    Article  Google Scholar 

  • M. Capitelli, R. Celiberto, G. Colonna, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, Formation of Vibrationally and Rotationally Excited Molecules during Atom Recombination at Surfaces, in Fundamental Aspects of Plasma Chemical Physics, (Springer, New York, 2016)

    Chapter  MATH  Google Scholar 

  • R. Celiberto, R.K. Janev, A. Laricchiuta, M. Capitelli, J.M. Wadehra, D.E. Atems, Cross section data for electron–impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes. At. Data Nucl. Data Tables 77, 161 (2001)

    Article  ADS  Google Scholar 

  • C. Courteille, A.M. Bruneteau, M. Bacal, Investigation of a large volume negative hydrogen ion source. Rev. Sci. Intrum. 66, 2533 (1995)

    Article  ADS  Google Scholar 

  • A.V. Dem’yanov, N.A. Dyatko, I.V. Kochetkov, A.P. Napartovich, A.F. Pal’, V.V. Pichugin, A.N. Starostin, Properties of a beam–driven discharge in an H2-Ar mixture. Sov. J. Plasma Phys. 11, 210 (1985)

    Google Scholar 

  • N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, L. Nahon, High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm. Nat. Photo-Dermatology 5, 149 (2011)

    Article  Google Scholar 

  • N. de Oliveira, D. Joyeux, D. Phalippou, J.C. Rodier, F. Polack, M. Vervloet, L. Nahon, A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum. Rev. Sci. Instr. 80, 043101 (2009)

    Article  ADS  Google Scholar 

  • V.D. Dougar-Jabon, A.J. Velasco, F.A. Vivas, Hydrogen negative ion production in an electron cyclotron resonance driven plasma. Rev. Sci. Instrum. 69, 950 (1998)

    Article  ADS  Google Scholar 

  • V.D. Dougra-Jabon, D.V. Reznikov, R. Santos Mayorga, Negative hydrogen ion ECR source. Rev. Sci. Instrum. 63, 2529 (1992)

    Article  ADS  Google Scholar 

  • V.D. Dougar-Jabon, Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma. Phys. Scri. 63, 322 (2001)

    Article  ADS  Google Scholar 

  • M.J.J. Eerden, M.C.M. van de Sanden, D.K. Otorbaev, D.C. Schram, Cross section for the mutual neutralization reaction \( {\textrm{H}}_2^{+}+{\textrm{H}}^{-} \), calculated in a multiple–crossing Landau-Zener approximation. Phys. Rev. A. 51, 3362 (1995)

    Article  ADS  Google Scholar 

  • D.D. Eley, E.K. Rideal, Parahydrogen conversion on Tungsten. Nature 146, 401 (1940)

    Article  ADS  Google Scholar 

  • U. Fantz, Basics of plasma spectrocopy. Plasma Sources Sci. Technol. 15, S137 (2006)

    Article  ADS  Google Scholar 

  • U. Fantz, H. Falter, P. Franzen, D. Wünderlich, M. Berger, A. Lorenz, W. Kraus, P. McNeely, R. Riedl, E. Speth, Spectroscopy – A powerful diagnostic toll in source development. Nucl. Fusion 46, S297 (2006)

    Article  ADS  Google Scholar 

  • U. Fantz, D. Wünderlich, Franck-Condon factors, transition probabilities, and radiative lifetimes for hydrogen molecules and their isotopomeres. At. Data Nucl. Data Tables 92, 853 (2006)

    Article  ADS  Google Scholar 

  • A. Firdman, L.A. Kennedy, Plasma Physics and Engineering (Taylors & Francis Books Inc., New York, 2004)

    Book  Google Scholar 

  • R. Friedl, U. Kurutz, U. Fantz, Efficiency of Cs-free materials for negative ion production in and plasmas. AIP Conf. Proc. 1869(030022) (2017)

    Google Scholar 

  • R. Friedl, D. Rauner, A. Heiler, U. Fantz, Dissociative recombination and its impact on the line profile of the hydrogen Balmer series. Plasma Sources Sci. Technol. 29, 015014 (2020)

    Article  ADS  Google Scholar 

  • S. Gammino, L. Celona, G. Ciavola, F. Maimone, D. Mascali, Review of high current 2.45 GHz electron cyclotron resonance sources (invited). Rev. Sci. Instrum. 81, 02B313 (2010)

    Article  Google Scholar 

  • R. Gobin, P. Auvray, M. Bacal, J. Breton, O. Delferrière, F. Harrault, A.A. Ivanov Jr., P. Svarnas, O. Tuske, Two approaches for H ion production with 2.45 GHz ion sources. Nucl. Fusion 46, S281 (2006)

    Article  ADS  Google Scholar 

  • V.A. Godyak, V.I. Demidov, Probe measurements of electron-energy distributions in plasmas: What can we measure and how can we achieve reliable results? J. Phys. D. Appl. Phys. 44, 233001 (2011)

    Article  ADS  Google Scholar 

  • B. Gordiets, C.M. Ferreira, M.J. Pinheiro, A. Ricard, Self–consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes. Plasma Sources Sci. Technol. 7, 363 (1998)

    Article  ADS  Google Scholar 

  • W.G. Graham, The kinetics of negative hydrogen ions in discharges. Plasma Sources Sci. Technol. 4, 281 (1995)

    Article  ADS  Google Scholar 

  • P.I. Hall, I. Čadež, M. Landau, F. Pichou, C. Schermann, Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface. Phys. Rev. Lett. 60, 337 (1988)

    Article  ADS  Google Scholar 

  • J. Harris, B. Kasemo, On precursor mechanisms for surface reactions. Surf. Sci. 105, L281 (1981)

    Article  ADS  Google Scholar 

  • J.R. Hiskes, Cross sections for the vibrational excitation of the \( {\textrm{H}}_2\left({\textrm{X}}^1{\Sigma}_{\textrm{g}}^{+}\right) \) state via electron collisional excitation of the higher singlet states. J. Appl. Phys. 51, 4592 (1980)

    Article  ADS  Google Scholar 

  • J.R. Hiskes, A.M. Karo, Analysis of the vibrational distribution in a hydrogen discharge. Appl. Phys. Lett. 54(6), 508 (1989)

    Article  ADS  Google Scholar 

  • J.R. Hiskes, A.M. Karo, Recombination and dissociation of \( {\textrm{H}}_2^{+}\ \textrm{and}\ {\textrm{H}}_3^{+}\ \textrm{ions}\ \textrm{on}\ \textrm{surfaces}\ \textrm{to}\ \textrm{form}\ {\textrm{H}}_2\left({\textrm{v}}^{\prime}\right) \): Negative-ion formation on low-work-function surfaces. J. Appl. Phys. 67, 6621 (1990)

    Google Scholar 

  • M.S. Huq, L.D. Doverspike, R.L. Champion, Electron detachment for collisions of H and D with hydrogen molecules. Phys. Rev. A 27(6), 2831 (1983)

    Article  ADS  Google Scholar 

  • B. Jackson, D. Lemoine, Eley–Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate. J. Chem. Phys. 114, 474 (2001)

    Article  ADS  Google Scholar 

  • R.K. Janev, D. Reiter, U. Samm, Collision Processes in Low-Temperature Hydrogen Plasma (Forschungszentrum, Zentralbibliothek, 2003)

    Google Scholar 

  • T. Kammler, D. Kolovos-Vellianitis, J. Küppers, A hot-atom reaction kinetic model for H abstraction from solid surfaces. Surf. Sci. 460, 91 (2000)

    Article  ADS  Google Scholar 

  • K.W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 4th edn. (Willey, 2019)

    Google Scholar 

  • J. Komppula, O. Tarvainen, T. Kalvas, H. Koivisto, R. Kronholm, J. Laulainen, P. Myllyperkiö, VUV irradiance measurement of a 2.45 GHz microwave-driven hydrogen discharge. J. Phys. D. Appl. Phys. 48(365201), 365201 (2015)

    Article  Google Scholar 

  • U. Kurutz, U. Fantz, Investigations on caesium-free alternatives for H formation at ion source relevant parameters. AIP Conf. Proc. 1655, 020005 (2015)

    Article  Google Scholar 

  • U. Kurutz, R. Friedl, U. Fantz, Investigations on Cs-free alternatives for negative ion formation in a low pressure hydrogen discharge at ion source relevant parameters. Plasma Phys. Control. Fusion 59, 075008 (2017)

    Article  ADS  Google Scholar 

  • A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, J. Pelletier, Multi-dipolar plasmas for uniform processing: Physics, design and performance. Plasma Sources Sci. Technol. 11, 407 (2002)

    Article  ADS  Google Scholar 

  • T. Lagarde, Y. Arnal, A. Lacoste, J. Pelletier, Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field. Plasma Sources Sci. Technol. 10, 181 (2001)

    Article  ADS  Google Scholar 

  • M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Diagnostics and Material Processing, 2nd edn. (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  • A.A. Matveyev, V.P. Silakov, Kinetic processes in a highly-ionized non-equilibrium hydrogen plasma. Plasma Sources Sci. Technol. 4, 606 (1995)

    Article  ADS  Google Scholar 

  • K.A. Miller, H. Bruhns, M. Čížek, J. Eliášek, R. Cabrera-Trujillo, H. Kreckel, A.P. O’Connor, X. Urbain, D.W. Savin, Isotope effect for associative detachment: H(D) + H(D)→H2(D2)+e. Phys. Rev A. 86, 032714 (2012)

    Article  ADS  Google Scholar 

  • M. Mitrou, P. Svarnas, S. Béchu, H and D production efficiency in a multi-dipole ECR-plasma source as a function of gas pressure. J. Phys. Conf. Ser. 2244, 012007 (2022)

    Article  Google Scholar 

  • S. Morisset, F. Aguillon, M. Sizun, V. Sidis, Quantum dynamics of H2 formation on a graphite surface through the Langmuir Hinshelwood mechanism. J. Chem. Phys. 121, 6493 (2004)

    Article  ADS  Google Scholar 

  • T. Mosbach, Population dynamics of molecular hydrogen and formation of negative hydrogen ions in a magnetically confined low temperature plasma. Plasma Sources Sci. Technol. 14, 610 (2005)

    Article  ADS  Google Scholar 

  • B. Peart, K.T. Dolder, Collision between electrons and \( {\textrm{H}}_2^{+} \) ions VI. Measurements of cross sections for the simultaneous production of H+ and H. J. Phys. B: Atom. Molec. Phys. 8, 1570 (1975)

    Article  ADS  Google Scholar 

  • D. Rauner, U. Kurutz, U. Fantz, Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER. AIP Conf. Proc. 1655(020017) (2015)

    Google Scholar 

  • J.R. Roth, Industrial Plasma Engineering (Institute of Physics Publishing Ltd., London, 1995)

    Book  Google Scholar 

  • M. Rutigliano, M. Cacciatore, G. Billing, Hydrogen atom recombination on graphite at 10 K via the Eley-Rideal mechanism. Chem. Phys. Lett. 340, 13 (2001)

    Article  ADS  Google Scholar 

  • M. Rutigliano, M. Cacciatore, Eley–Rideal recombination of hydrogen atoms on a tungsten surface Phys. Chem. Chem. Phys. 13, 7475 (2011)

    Article  Google Scholar 

  • D. Spence, K.R. Lykke, Production of negative hydrogen and deuterium ions in microwave-driven ion sources, Proc. 19th Linear Accelerator Conference (LINAC), Chicago, IL, USA, TU4048, 508 (1998)

    Google Scholar 

  • P. Svarnas, J. Breton, M. Bacal, T. Mosbach, Pressure optimization for H ion production in an electron cyclotron resonance-driven and a filamented source. Rev. Sci. Instrum. 77, 03A532 (2006)

    Article  Google Scholar 

  • P. Svarnas, J. Breton, M. Bacal, R. Faulkner, Plasma electrode bias effect on the H negative-ion density in an electron cyclotron resonance volume source. IEEE Trans. Plasma Sci. 35, 1156 (2007)

    Article  ADS  Google Scholar 

  • F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region. Phys. Plasmas 14(73503), 073503 (2007)

    Article  ADS  Google Scholar 

  • A.J.C. Velasco, A.L.C. Parra, W.A.P. Serrano, Negative ion generation and isotopic effect in electron cyclotron resonance plasma. IEEE Trans. Plasma Sci. 43, 1729 (2015)

    Article  ADS  Google Scholar 

  • M.C. Williamson, A.J. Lichtenberg, M.A. Lieberman, Self-consistent electron cyclotron resonance absorption in a plasma with varying parameters. J. Appl. Phys. 72, 3924 (1992)

    Article  ADS  Google Scholar 

  • B.J. Wood, H. Wise, Diffusion and heterogeneous reaction. II. Catalytic activity of solids for hydrogen atom recombination. J. Chem. Phys. 29, 1416 (1958)

    Article  ADS  Google Scholar 

  • B.J. Wood, H. Wise, Kinetics of hydrogen aton recombination on surfaces. J. Phys. Chem. 65, 1976 (1961)

    Article  Google Scholar 

  • W. Yang, S.N. Averkin, A.V. Khrabrov, I.D. Kaganovich, Y.N. Wang, S. Aleiferis, P. Svarnas, Benchmarking and validation of global model code for negative hydrogen ion sources. Phys. Plasmas 25, 113509 (2018)

    Article  ADS  Google Scholar 

  • T. Zhang, S.-X. Peng, W.-B. Wu, H.-T. Ren, J.-F. Zhang, J.-M. Wen, T.-H. Ma, Y.-X. Jiang, J. Sun, Z.-Y. Guo, J.-E. Chen, Practical 2.45-GHz microwave-driven Cs-free H− ion source developed at Peking University. Chin. Phys. B 27(105208), 105208 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Svarnas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svarnas, P., Mitrou, M., Lemaire, J.L., Gavilan, L., de Oliveira, N., Béchu, S. (2023). ECR–Driven Negative Ion Sources Operating with Hydrogen and Deuterium. In: Bacal, M. (eds) Physics and Applications of Hydrogen Negative Ion Sources. Springer Series on Atomic, Optical, and Plasma Physics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-21476-9_12

Download citation

Publish with us

Policies and ethics