Skip to main content

On an Artificial Neural Network Approach for Predicting Photosynthetically Active Radiation in the Water Column

  • Conference paper
  • First Online:
Artificial Intelligence XXXIX (SGAI-AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13652))

  • 622 Accesses

Abstract

About 1,600 bio-geo-chemical Argo floats (BGC-Argo), equipped with a variety of physical sensors, are currently being deployed in the ocean around the world for profiling the water characteristics up to a depth of 2,000 m. One of the parameters measured by the Argo is the radiometric measurement of downward irradiance, which is important for primary production studies. The multispectral Ocean Color Radiometer measures the downwelling irradiance at three wavelengths 380 nm, 412 nm and 490 nm plus the photosynthetically available radiation (PAR) integrated from 400 nm to 700 nm. This study proposes a method to reconstruct the PAR sensor values from readings of the remaining onboard sensors, independent of the location the BGC-Argo is being deployed. This allows for the PAR channel being replaced by a fourth band in the visible range. Stahl et al. [1] have already shown, that a machine learning approach, based on a multiple linear regression (MLR) or on a regression tree (RT), is capable of predicting the PAR values based on other parameters measured by the physical sensors of the BGC-Argo float. In this study, a nonlinear Artificial Neural Network (ANN) was used for the prediction of PAR. The ANN achieved a better coefficient of determination R2 of 0.9968, compared with the MLR approach, which achieved an R2 of about 0.97 for a combined dataset consisting of measurements from three different geographical locations. Therefore, it was concluded that the ANN was better suited to generalise the underlying transfer function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stahl, F., Nolle, L., Jemai, A., Zielinski, O.: A model for predicting the amount of photosynthetically available radiation from BGC-ARGO float observations in the water column. Commun. ECMS 36 (2021)

    Google Scholar 

  2. Lotze, H.K., et al.: Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 116, 12907–12912 (2019)

    Article  Google Scholar 

  3. Wollschläger, J., Neale, P., North, R., Striebel, M., Zielinski, O.: Climate change and light in aquatic ecosystems: variability & ecological consequences. Front. Mar. Sci. 8, 688712 (2021)

    Article  Google Scholar 

  4. Roemmich, D., et al.: On the future of argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019)

    Article  Google Scholar 

  5. Sloyan, B.M., Roughan, M., Hill, K.: Global ocean observing system. New Front. Oper. Oceanogr. 75–89 (2018)

    Google Scholar 

  6. Claustre, H., Johnson, K., Takeshita, Y.: Observing the global ocean with biogeochemical-argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019)

    Article  Google Scholar 

  7. Organelli, E., Leymarie, E., Zielinski, O., Uitz, J., D’Ortenzio, F., Claustre, H.: Hyperspectral radiometry on biogeochemical-argo floats: a bright perspective for phytoplankton diversity. Observing 90 (2021)

    Google Scholar 

  8. Johnson, K.S., et al.: Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res.: Oceans 122(8), 6416–6436 (2017)

    Article  Google Scholar 

  9. Claustre, H., et al.: Bio-optical sensors on argo floats. In: Claustre, H. (ed.) Reports and Monographs of the International Ocean-Colour Coordinating Group, pp. 1–89 (2011)

    Google Scholar 

  10. Jiang, Y., Gou, Y., Zhang, T., Wang, K., Chengquan, H.: A machine learning approach to argo data analysis in a thermocline. Sensors 17(10), 2225 (2017)

    Article  Google Scholar 

  11. Freedman, D.: Statistical Models: Theory and Practice. Cambridge University Press (2009)

    Google Scholar 

  12. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.: Classification and Regression Trees.Routledge (2017)

    Google Scholar 

  13. Wang, L., Gong, W., Li, C., Lin, A., Hu, B., Ma, Y.: Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China. Appl. Energy 111, 1010–1017 (2013)

    Article  Google Scholar 

  14. Holinde, L., Zielinski, O.: Bio-optical characterization and light availability parameterization in Uummannaq Fjord and Vaigat-Disko Bay (West Greenland). Ocean Sci. 12, 117–128 (2016)

    Article  Google Scholar 

  15. López, G., Rubio, M., Martínez, M., Batlles, F.: Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agric. For. Meteorol. 107(4), 279–291 (2001)

    Article  Google Scholar 

  16. Jacovides, C., Tymvios, F., Boland, J., Tsitouri, M.: Artificial Neural Network models for estimating daily solar global UV, PAR and broadband radiant fluxes in an eastern Mediterranean site. Atmos. Res. 152, 138–145 (2015)

    Article  Google Scholar 

  17. Yu, X., Guo, X.: Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models. Int. J. Biometeorol. 60(8), 1247–1259 (2015)

    Article  Google Scholar 

  18. Jemai, A., Wollschläger, J., Voß, D., Zielinski, O.: Radiometry on argo floats: from the multispectral state-of-the-art on the step to hyperspectral technology. Front. Marine Sci. 8, 676537 (2021)

    Article  Google Scholar 

  19. SATLANTIC: Operation manual for the OCR-504. In: SATLANTIC Operation Manual SAT-DN-00034, p. 66 (2013)

    Google Scholar 

  20. Xing, X., Morel, A., Claustre, H., D’Ortenzio, F., Poteau, A.: Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption. J. Geophys. Res. 117, 1–16 (2012)

    Google Scholar 

  21. Organelli, E., et al.: A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances. J. Atmos. Ocean. Technol. 33, 937–951 (2016)

    Article  Google Scholar 

  22. Mignot, A., Ferrari, R., Claustre, H.: Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nature Commun. 9, 190 (2018)

    Article  Google Scholar 

  23. Hong-ze, L., Sen, G., Chun-jie, L., Jing-qi, S.: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl.-Based Syst. 37, 378–387 (2013)

    Article  Google Scholar 

  24. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the Ministry for Science and Culture, Lower Saxony, Germany, through funds from the Niedersächsische Vorab (ZN3480), and the German Federal Ministry of Education and Research, project SpektralArgo-N (Grant No. 03F0825A and 03V01478), and project DArgo2025 (Grant-No. 03F0857B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin M. Kumm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumm, M.M., Nolle, L., Stahl, F., Jemai, A., Zielinski, O. (2022). On an Artificial Neural Network Approach for Predicting Photosynthetically Active Radiation in the Water Column. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XXXIX. SGAI-AI 2022. Lecture Notes in Computer Science(), vol 13652. Springer, Cham. https://doi.org/10.1007/978-3-031-21441-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21441-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21440-0

  • Online ISBN: 978-3-031-21441-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics