Skip to main content

The Taxonomic Structure of the Prokaryotic Biome of the Rhizosphere Triticum Aestivum L. Depending on the Variety and Application of Associative Bacteria

  • Conference paper
  • First Online:
XV International Scientific Conference “INTERAGROMASH 2022” (INTERAGROMASH 2022)

Abstract

Microbial biotechnologies of the plant rhizosphere can activate natural processes aimed at increasing the productivity of agrocenoses and preserving soil fertility. The introduction of rhizobacteria that can actively populate the rhizosphere and rhizoplane of plants using the nutrients of root exometabolites is an actual means of stimulating the growth, development of plants and protecting them from phytopathogens. The aim of the work was to study the effect of the introduction of associative bacterial strains into the rhizosphere of winter wheat of three varieties on changes in the taxonomic structure of the microbiome. The influence of T. aestivum L.-associated strains on the taxonomic structure of the rhizosphere in the conditions of field experience on the southern chernozem of the Steppe zone of Crimea was established. Nine phyla of prokaryotes were included in the dominant group (the share is above 1%): Thaumarchaeota, Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Firmicutes, Planctomycetes, Proteobacteria, and Verrucomicrobia. The positive effect of the isolated strains of associative bacteria on the relative number of metabolically significant bacterial families is shown, and according to the analysis of the main components. Significant effect on changes in the taxonomic structure of the rhizosphere microbiome is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamulina, I.V., et al.: The influence of long–term Zn and Cu contamination in Spolic Technosols on water–soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 208, 111471 (2021)

    Article  Google Scholar 

  2. Salas-González, I., et al.: Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371(65), eabd0695 (2021)

    Google Scholar 

  3. Pigoleva, S.V., et al.: Effects of associative microorganisms on plant growth and resistance to xenobiotics and phytopathogens. Appl. Biochem. Microbiol. 56(4), 390–400 (2020)

    Article  Google Scholar 

  4. Melnichuk, T., et al.: Associative to Triticum aestivum L. bacteria as a source of strains for biotechnology of the rhizosphere. J. Microbiol. Biotechnol. Food Sci. 8(5), 1194–1197 (2019)

    Article  Google Scholar 

  5. Andronov, E.E., et al.: Isolation of DNA from soil samples. PC “Association Venta”, p. 27. St. Petersburg (2011)

    Google Scholar 

  6. Bates, S.T., et al.: Examining the global distribution of dominant archaeal populations in soil. The ISME J 5, 908–917 (2010)

    Article  Google Scholar 

  7. Callahan, B.J., et al.: DADA2: High–resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016)

    Article  Google Scholar 

  8. McMurdie, Holmes: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013)

    Google Scholar 

  9. Wright, E.S.: Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8(1), 352–359 (2016)

    Article  Google Scholar 

  10. Caporaso, J.G., et al.: J QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7(5), 335–336 (2010)

    Article  Google Scholar 

  11. Hammer, O., et al.: PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001)

    Google Scholar 

  12. Lee, S.H., et al.: Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285, 263–269 (2008)

    Article  Google Scholar 

  13. Barka, E.A., et al.: Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80(1), 1–43 (2016)

    Article  MathSciNet  Google Scholar 

  14. Simmons, C.W., et al.: The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil. Appl. Soil. Ecol. 106, 37–46 (2016)

    Article  Google Scholar 

  15. Ivanova, E.A., et al.: The structure of microbial community in aggregates of a typical chernozem aggregates under contrasting variants of its agricultural use. Eurasian Soil Sci. 48(11), 1242–1256 (2015). https://doi.org/10.1134/S1064229315110083

    Article  Google Scholar 

  16. DeBruyn, J.M., et al.: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol 77(17), 6295–6300 (2011)

    Article  Google Scholar 

  17. Kavamura, V.N.: Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front. Microbiol. 9, 1074 (2018)

    Article  Google Scholar 

  18. Bonanomi, G., et al.: Organic farming induces changes in soil microbiota that affect agro–ecosystem functions. Soil Biol. Biochem. 103, 327–336 (2016)

    Article  Google Scholar 

  19. Gorshkov, V.Y., et al.: Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections. Ann. Bot. 108, 1–12 (2021)

    Google Scholar 

  20. Pester, M., et al.: AmoA–based consensus phylogeny of ammonia–oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol 14, 525–539 (2012)

    Article  Google Scholar 

  21. Petrova, S.N., et al.: Prokaryotic community structure in the rapeseed (Brassica napus L.) rhizosphere depending on addition of 1–aminocyclopropane–1–carboxylate–utilizing bacteria. Microbiology 89(1), 121–128 (2020)

    Article  MathSciNet  Google Scholar 

  22. Rosenberg, E., et al.: The family Chitinophagaceae. The Prokaryotes, pp. 493–495. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  23. Zhurlov, O.S., et al.: Comparative analysis of prokaryotic communities associated with conventional croplands and fallow lands. Eur. Sci. Rev. 5(6), 13–16 (2018)

    Article  Google Scholar 

  24. Meena, M., et al.: PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J. Basic Microbiol. 60(10), 828–861 (2020)

    Google Scholar 

  25. Ortiz-Cornejo, N.L., et al.: Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Appl. Soil. Ecol. 119, 417–427 (2017)

    Article  Google Scholar 

  26. Cutiño-Jiménez, A.M., Menck, C.F.M., Cambas, Y.T., Díaz-Pérez, J.C.: Protein signatures to identify the different genera within the Xanthomonadaceae family. Braz. J. Microbiol. 51(4), 1515–1526 (2020). https://doi.org/10.1007/s42770-020-00304-2

    Article  Google Scholar 

  27. Roquigny, R., et al.: Pseudomonadaceae: from biocontrol to plant growth promotion rhizotrophs: plant growth promotion to bioremediation, pp. 239–68. Springer, Singapore (2017)

    Google Scholar 

  28. Maheshwari, D.K., et al.: Phytohormone–producing PGPR for sustainable agriculture Bacterial metabolites in sustainable agroecosystem. Springer Int. Publ. Switzerland 12, 159–182 (2015)

    Google Scholar 

Download references

Acknowledgments

The work was carried out within the Framework of the State Assignment of Fundamental Research No. 0834–2018-0005 and with the support of the RFBR grant A18–016-00197, with the support of the Center for Shared Use “Genomic Technologies, Proteomics and Cell Biology” ARRIAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Egovtseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egovtseva, A., Melnichuk, T., Abdurashytov, S., Abdurashytova, E., Radchenko, L. (2023). The Taxonomic Structure of the Prokaryotic Biome of the Rhizosphere Triticum Aestivum L. Depending on the Variety and Application of Associative Bacteria. In: Beskopylny, A., Shamtsyan, M., Artiukh, V. (eds) XV International Scientific Conference “INTERAGROMASH 2022”. INTERAGROMASH 2022. Lecture Notes in Networks and Systems, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-031-21219-2_209

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21219-2_209

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21218-5

  • Online ISBN: 978-3-031-21219-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics