Skip to main content

Control and Power Management of Microgrid Supplied a Domestic and Industrial Loads

  • Conference paper
  • First Online:
Advanced Computational Techniques for Renewable Energy Systems (IC-AIRES 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 591))

  • 564 Accesses

Abstract

Renewable energies such as photovoltaic, fuel cell, and wind power have become an important role in the microgrid. Control and power management have become the center of recent research. The present system in this paper is composed of a photovoltaic (PV), small wind turbine generator (SWTG), fuel cell (FC), and a big wind turbine generator (BWTG), with the associated DC/DC, DC/AC, and AC/DC converters, to assure proposed system stability. This paper develops a comprehensive control and power management system to regulate DC bus, achieve an effective balance between supply and demand, and control the MPPT to extract the maximum power from the PV system. When the control and power management systems are integrated, and the loads change suddenly, the DC bus voltage remains stable, and power remains balanced. The simulation was used to prove the performance of the proposed control and power management system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andre Vidal, R.S., Leonardo Jacobs, A.A., Lucas, S.B.: An evolutionary approach for the demand side management optimization in smart grid. In: Presented at the 24th IEEE Symposium on Computational Intelligence Application in Smart Grid, Orlando, FL, USA (2014)

    Google Scholar 

  2. Ghasem, D., Heider, A.S., Ahad, K.: The optimization of demand response programs in smart grids. Energy Policy 94, 295–306 (2016)

    Article  Google Scholar 

  3. Riffonneau, Y., Bacha, S., Baruel, F., Ploix, S.: Optimal power flow management for grid connected PV systems with batteries. IEEE Trans. Sustain. Energy. 2(3), 309–320 (2011)

    Article  Google Scholar 

  4. Pinnreli, A., Barone, G., Brusco, G., Sorrentino, N.: A power management and control strategy with grid-ancillary services for microgrid based on DC bus. Int. Rev. Electr. Eng. 9(4), 792–802 (2014)

    Google Scholar 

  5. Riffonneau, Y., Bacha, S., Barruel, F., Delaille, A.: Energy flow management in grid connected PV systems with storage - a deterministic approach. In: Presented at the IEEE International Conference on industrial technology, Gipsland, VIC, Austria (2009)

    Google Scholar 

  6. Kumaravel, S., Ashok, S.: Adapted multilayer feed forward ANN based power management control of solar photovoltaic and wind integrated power system. In: Presented at the IEEE PES Innovative Smart Grid Technologies, Keralla, India (2011)

    Google Scholar 

  7. Ramash Kumar, K., Kalyankumar, D., Kirubakaran, V.: A hybrid multi level inverter based DSTATCOM control. Majlesi J. Electr. Eng. 5(2), 17–21 (2011)

    Google Scholar 

  8. Seok-Kyoon, K., Young, I.L.: Model predictive control for the power control of three-phase AC/DC converters using a disturbance observer. In: Presented at the 15th International Conference on Control, Automation and Systems (ICCAS), Busan, South Korea (2015)

    Google Scholar 

  9. Bouharchouche, A., Berkouk, E., Ghennam, T.: Control and energy management of a grid connected hybrid energy system PV - wind with battery energy storage for residential applications. In: Presented at the 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies, Monte Carlo, Monaco (2013)

    Google Scholar 

  10. Taheri, H., Akhrif, O., Francis, A.O.: Contribution of PV generators with energy storage to grid frequency and voltage regulation via nonlinear control techniques. In: Presented at the 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria (2013)

    Google Scholar 

  11. Hipparagi, S.C., Kulkarni, P.D.: Maximum power point tracker for PV solar panels using SEPIC converter. Int. J. Sci. Res. 4(5), 403–407 (2015)

    Google Scholar 

  12. Guentri, H., Allaoui, T., Mekki, M., Dennai, M.: Power management and control of a photovoltaic system with hybrid battery-supercapacitor energy storage based on heuristics methods. J. Energy Storage 39, 102578 (2021)

    Article  Google Scholar 

  13. Li, H., Tesfaye, A., Eseye, J.Z., Zheng, D.: Near optimal energy management algorithms for grid-connected storage systems. Prot. Control Mod. Power Syst. 2(12), 1–14 (2017)

    Google Scholar 

  14. Junchao, M., Fanbo, H., Zhingming, Z., Fei, K., Chongjian, L.: A novel power management strategy for single phase storage-equipped grid-connected PV generation system. In: Presented at the 1st International Future Energy Electronics Conference, Tainan, Taiwan (2013)

    Google Scholar 

  15. Eghtedarpour, N., Farjah, E.: Power control and management in a hybrid AC/DC microgrid. IEEE Trans. Smart Grid 5(3), 1494–1505 (2014)

    Article  Google Scholar 

  16. Paraveen, T.K., Subrahmanyam, N., Sydulu, M.: Fuzzy controlled power management strategies for a grid connected hybrid energy system. In: Presented at the IEEE PES T&D Conference and Exposition IL, USA, Chicago (2014)

    Google Scholar 

  17. Nejabatkhah, F., Li, Y.W.: Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electr. 30(12), 7072–7089 (2015)

    Article  Google Scholar 

  18. Macko, D., Jelemenska, K., Cicak, P.: Power-management high-level synthesis. In: Presented at the IEEE International Conference on Very Large Scale Integration, Daejeon, South Africa (2015)

    Google Scholar 

  19. Lamdica, R., Santini, E., Teodori, S.: Electrical loads management in a smart building by PV sources in power scenario. Int. Rev. Electr. Eng. 9(5), 966–975 (2017)

    Google Scholar 

  20. Kaabache, A., Ibtiouen, R.: Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Sol. Energy 103, 171–182 (2014)

    Article  Google Scholar 

  21. Kwasinski, A., Onwuchekwa, C.N.: Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads. IEEE Trans. Power Electr. 26(3), 822–833 (2011)

    Article  Google Scholar 

  22. Anand, S., Fernandes, B.G., Guerrero, J.: Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electr. 28(4), 1900–1913 (2013)

    Article  Google Scholar 

  23. Wang, C., Li, X., Guo, L., Li, Y.W.: A nonlinear disturbance observer based DC bus voltage control for a hybrid AC/DC microgrid. IEEE Trans. Power Electr. 29(11), 6162–6177 (2014)

    Article  Google Scholar 

  24. Krishna, L.M., Chandra Sekhar, G.N., Naresh, M., Samuel, P.: Performance analysis of grid integrated photovoltaic systems using marx multilevel onverter in different environmental conditions. U.P.B. Sci. Bull. 80(2), 217–230 (2018)

    Google Scholar 

  25. Global Energy and CO2 Status Report 2018. International Energy Agency (2019)

    Google Scholar 

  26. Project Partner, Paul Scherrer Institute (PSI), Switzerland: World Energy Scenarios, Composing energy futures to 2050. World Energy Council, For sustainable energy (2013)

    Google Scholar 

  27. Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. J. 3, 1–14 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Guentri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guentri, H., Lakdja, F., Belhamidi, M., Dahbi, A. (2023). Control and Power Management of Microgrid Supplied a Domestic and Industrial Loads. In: Hatti, M. (eds) Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-031-21216-1_41

Download citation

Publish with us

Policies and ethics