Skip to main content

High-Efficiency 60-GHz Printed Antenna Using a Triple-Layer Metasurface

  • Conference paper
  • First Online:
Advanced Computational Techniques for Renewable Energy Systems (IC-AIRES 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 591))

  • 555 Accesses

Abstract

In this research article, a microstrip printed antenna operating at 60 GHz with an ultrathin triple-layer FSS metasurface is presented. Two different FSS metasurface structures without a dielectric substrate are proposed in order to improve antenna performance. The first structure is a cross-slot, while the second is a double circular split-ring resonator (DCSRR). The effect of their size and shape on the gain and bandwidth of the antenna has been investigated. The simulation results show that the antenna performance can be significantly improved by using a triple-layer metasurface structure with a cross-slot. This design achieves a maximum gain of 10.7 dB, a wide bandwidth of 4.9%, and an efficiency of 97%. This proposed antenna has outstanding performance in broadband and can be used in millimeter-wave wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheng, H., Orlik, P., Haimovich, A.M., Cimini, L.J., Zhang, J.: On the spectral and power requirements for ultra-wideband transmission. In: IEEE International Conference on Communications, 2003. ICC’03, vol. 1, pp. 738–742. IEEE (2003)

    Google Scholar 

  2. Liang, J., Chiau, C.C., Chen, X., Parini, C.G.: Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans. Antennas Propag. 53(11), 3500–3504 (2005)

    Article  Google Scholar 

  3. Hum, S.V., Perruisseau-Carrier, J.: Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans. Antennas Propag. 62(1), 183–198 (2013)

    Article  Google Scholar 

  4. Mailloux, R.J.: Phased Array Antenna Handbook. Artech house (2017)

    Google Scholar 

  5. Valavan, S., Tran, D., Yarovoy, A., Roederer, A.: Planar dual-band wide-scan phased array in X-band. IEEE Trans. Antennas Propag. 62(10), 5370–5375 (2014)

    Article  MATH  Google Scholar 

  6. Pozar, D., Schaubert, D.: Scan blindness in infinite phased arrays of printed dipoles. IEEE Trans. Antennas Propag. 32(6), 602–610 (1984)

    Article  Google Scholar 

  7. Pozar, D., Schaubert, D.: Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds. IEEE Trans. Antennas Propag. 32(10), 1101–1107 (1984)

    Article  Google Scholar 

  8. Qu, S.-W., et al.: Terahertz reflectarray and transmitarray. In: 2016 International Symposium on Antennas and Propagation (ISAP). IEEE, pp. 548–549 (2016)

    Google Scholar 

  9. Jiang, M., Chen, Z.N., Zhang, Y., Hong, W., Xuan, X.: Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans. Antennas Propag. 65(2), 464–472 (2016)

    Article  Google Scholar 

  10. Liu, G., Kodnoeih, M.R.D., Pham, K.T., Cruz, E.M., Gonz´alez-Ovejero, D., Sauleau, R.: A millimeter-wave multibeam transparent transmitarray antenna at ka-band. IEEE Antenn. Wirel. Propag. Lett. 18(4), 631–635 (2019)

    Google Scholar 

  11. Tsai, F.-C., Bialkowski, M.E.: Investigations into the design of a spatial power combiner employing a planar transmitarray of stacked patch antennas. In 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824), vol. 2, pp. 509–512. IEEE (2004)

    Google Scholar 

  12. Abdelrahman, A.H., Yang, F., Elsherbeni, A.Z.: Analysis of multilayer frequency selective surfaces for transmitarray antenna applications. In: Proceedings of 29th Annual Revision Propogation, pp. 135–140. ACES (2013)

    Google Scholar 

  13. Abdelrahman, A.H., Elsherbeni, A.Z., Yang, F.: Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs. IEEE Trans. Antennas Propag. 62(2), 690–697 (2013)

    Article  Google Scholar 

  14. Milne, R.: Dipole array lens antenna. IEEE Trans. Antennas Propag. 30(4), 704–712 (1982)

    Article  Google Scholar 

  15. Datthanasombat, S., Prata, A., Arnaro, L.R., Harrell, J.A., Spitz, S., Perret, J.: Layered lens antennas. In: IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229), vol. 2, pp. 777–780. IEEE (2001)

    Google Scholar 

  16. Li, M., Behdad, N.: Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces. IEEE Trans. Antennas Propag. 61(8), 4109–4119 (2013)

    Article  Google Scholar 

  17. Abdelrahman, A.H., Elsherbeni, A.Z., Yang, F.: Transmitarray antenna design using cross-slot elements with no dielectric substrate. IEEE Antennas Wirel. Propag. Lett. 13, 177–180 (2014)

    Article  Google Scholar 

  18. Liu, G., Wang, H.-J., Jiang, J.-S., Xue, F., Yi, M.: A high-efficiency transmitarray antenna using double split ring slot elements. IEEE Antennas Wirel. Propag. Lett. 14, 1415–1418 (2015)

    Article  Google Scholar 

  19. Clemente, A., Dussopt, L., Sauleau, R., Potier, P., Pouliguen, P.: Wideband 400-element electronically reconfigurable transmitarray in X band. IEEE Trans. Antennas Propag. 61(10), 5017–5027 (2013)

    Article  Google Scholar 

  20. Abdelrahman, A.H., Elsherbeni, A.Z., Yang, F.: High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements. IEEE Antenn. Wirel. Propag. Lett. 13, 1288–1291 (2014)

    Google Scholar 

  21. Ryan, C.G., Chaharmir, M.R., Shaker, J., Bray, J.R., Antar, Y.M., Ittipiboon, A.: A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag. 58(5), 1486–1493 (2010)

    Article  Google Scholar 

  22. Kaouach, H., Dussopt, L., Lanteri, J., Koleck, T., Sauleau, R.: Wideband low-loss linear and circular polarization transmit-arrays in V-band. IEEE Trans. Antennas Propag. 59(7), 2513–2523 (2011)

    Article  Google Scholar 

  23. Balanis, C.A.: Antenna Theory: Analysis and Design. John Wiley & Sons (2016)

    Google Scholar 

  24. Biglarbegian, B., Fakharzadeh, M., Busuioc, D., Nezhad-Ahmadi, M.-R., Safavi-Naeini, S.: Optimized microstrip antenna arrays for emerging millimeter-wave wireless applications. IEEE Trans. Antennas Propag. 59(5), 1742–1747 (2011)

    Article  Google Scholar 

  25. Kondo, A.: Design and characteristics of ring-slot type FSS. Electron. Lett. 27(3), 240–241 (1991)

    Article  MathSciNet  Google Scholar 

  26. Studios, C.M.: CST Microwave studio, CST Studio Suite (2008)

    Google Scholar 

  27. Ge, Y., Lin, C., Liu, Y.: Broadband folded transmitarray antenna based on an ultrathin transmission polarizer. IEEE Trans. Antennas Propag. 66(11), 5974–5981 (2018)

    Article  Google Scholar 

  28. Leger, L., Serier, C., Chantalat, R., Thevenot, M., Monedière, T., Jecko, B.: 1D dielectric electromagnetic band gap (EBG) resonator antenna design. Ann. Télécommun. 59(3), 242–260 (2004). https://doi.org/10.1007/BF03179697

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Messatfa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Messatfa, T., Chebbara, F. (2023). High-Efficiency 60-GHz Printed Antenna Using a Triple-Layer Metasurface. In: Hatti, M. (eds) Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-031-21216-1_17

Download citation

Publish with us

Policies and ethics