Skip to main content

First Results for Planar Continuous Systems with Three Zones

  • Chapter
  • First Online:
Bifurcations in Continuous Piecewise Linear Differential Systems

Part of the book series: RSME Springer Series ((RSME,volume 7))

  • 264 Accesses

Abstract

In this chapter, we consider Liénard systems with three linear zones (2.5) satisfying (2.6) and (2.7), which we rewrite explicitly for ease of reading. Therefore, we are given the following system

$$\displaystyle \begin{aligned} \begin{array}{rcl} \dot{x}& = & F(x)-y,\\ \dot{y}& = & g(x)-a, \end{array} \end{aligned} $$
(4.1)

where

$$\displaystyle \begin{aligned} F(x)=\left\{\begin{array}{ll} t_{L}(x+1)-t_{C} & \text{ if }x < -1,\\ t_{C}x & \text{ if } |x| \leq 1,\\ t_{R}(x-1)+t_{C} & \text{ if }x > 1, \end{array}\right. \end{aligned} $$
(4.2)

and

$$\displaystyle \begin{aligned} g(x)=\left\{\begin{array}{ll} d_{L}(x+1)-d_{C} & \text{ if }x < -1,\\ d_{C}x & \text{ if }|x| \leq 1,\\ d_{R}(x-1)+d_{C} & \text{ if }x > 1, \end{array}\right. \end{aligned} $$
(4.3)

so that the phase plane is divided into three zones, possibly with different linear dynamics, namely the central zone \(\mathcal {S}_C = \{(x,y)\in \mathbb {R}^2: -1< x < 1\}\), and the external zones \(\mathcal {S}_{R} = \{(x,y)\in \mathbb {R}^2 : x > 1\}\), \(\mathcal {S}_{L} = \{(x,y)\in \mathbb {R}^2 : x <-1\}\), separated by the straight lines \(\Sigma _{1} = \{(x,y)\in \mathbb {R}^2: x = 1\}\) and \( \Sigma _{-1} = \{(x,y)\in \mathbb {R}^2: x = -1\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernardin, L., Chin, P., DeMarco, P., Geddes, K., Hare, D., Heal, K., Labahn, G., May, J., McCarron, J., Monagan, M., Ohashi, D., Vorkoetter, S.: Maple programming guide. Maplesoft, Waterloo ON, Canada (2014)

    Google Scholar 

  2. Carmona, V., Fernández-García, S., Teruel, A.: Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems 39, 5275–5299 (2019). doi: 10.3934/dcds.2019215

  3. Carmona, V., Freire, E., Ponce, E., Ros, J., Torres, F.: Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua’s circuit. International Journal Bifurcation and Chaos 15, 2469–2484 (2005). doi: 10.1142/S0218127405014027

  4. Chow, S., Hale, J.: Methods of bifurcation theory, Undergraduate Texts in Mathematics, vol. 251, 1 edn. Springer-Verlag (1982). doi: 10.1007/978-1-4613-8159-4

  5. Dumortier, F., Llibre, J., Artés, J.: Qualitative theory of planar differential systems. Universitext – Springer – Verlag. Springer London, Limited (2006)

    MATH  Google Scholar 

  6. Freire, E., Ponce, E., Ros, J.: Limit cycle bifurcation from center in symmetric piecewise-linear systems. International Journal of Bifurcation and Chaos 9(5), 895–907 (1999). doi: 10.1142/S0218127499000638

  7. Freire, E., Ponce, E., Ros, J.: The focus-center-limit cycle bifurcation in symmetric 3D piecewise linear systems. SIAM Journal of Applied Mathematics 65(6), 1933–1951 (2005). doi: 10.1137/040606107

  8. Freire, E., Ponce, E., Ros, J.: Bistability and hysteresis in symmetric 3D piecewise linear oscillators with three zones. International Journal of Bifurcation and Chaos 18(12), 3633–3645 (2008). doi: 10.1142/S0218127408022603

  9. Inc., W.R.: Mathematica, Version 12.3. Inc. Wolfram Research, Champaign, Illinois (2021). URL https://www.wolfram.com/mathematica

  10. Jordan, D., Smith, P.: Nonlinear ordinary differential equations: An introduction for scientists and engineers, 4 edn. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  11. Kriegsmann, G.: The rapid bifurcation of the Wien bridge oscillator. IEEE Trans. Circuits Syst. 34, 1093–1096 (1987)

    Article  MathSciNet  Google Scholar 

  12. Levinson, N., Smith, O.: A general equation for relaxation oscillations. Duke Mathematical Journal 9, 382–403 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liénard, A.: Etude des oscillations entretenues. Revue générale de l’électricité 23, 901–912 and 946–954 (1928)

    Google Scholar 

  14. Llibre, J., Sotomayor, J.: Phase portraits of planar control systems. Nonlinear Analysis, Theory, Methods & Applications 27(10), 1177–1197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ye, Y.Q., Cai, S.L., Chen, L.S., Huang, K.C., Luo, D.J., Ma, Z.E., Wang, E.N., Wang, M.S., Yang, X.A.: Theory of limit cycles. American Mathematical Society, Providence, Rhode Island (1986)

    Google Scholar 

  16. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative theory of differential equations. AMS Translations of Math. Mon., Providence, Rhode Island (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponce, E., Ros, J., Vela, E. (2022). First Results for Planar Continuous Systems with Three Zones. In: Bifurcations in Continuous Piecewise Linear Differential Systems. RSME Springer Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-21135-5_4

Download citation

Publish with us

Policies and ethics