Skip to main content

Community Detection Supported by Node Embeddings (Searching for a Suitable Method)

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

Abstract

Most popular algorithms for community detection in graphs have one serious drawback, namely, they are heuristic-based and in many cases are unable to find a near-optimal solution. Moreover, their results tend to exhibit significant volatility. These issues might be solved by a proper initialization of such algorithms with some carefully chosen partition of nodes. In this paper, we investigate the impact of such initialization applied to the two most commonly used community detection algorithms: Louvain and Leiden. We use a partition obtained by embedding the nodes of the graph into some high dimensional space of real numbers and then running a clustering algorithm on this latent representation. We show that this procedure significantly improves the results. Proper embedding filters unnecessary information while retaining the proximity of nodes belonging to the same community. As a result, clustering algorithms ran on these embeddings merge nodes only when they are similar with a high degree of certainty, resulting in a stable and effective initial partition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/bartoszpankratz/ECCD.

  2. 2.

    https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb.

  3. 3.

    https://github.com/thunlp/OpenNE.

  4. 4.

    EC stands for Embedding–Clustering and denotes the proposed extension of Louvain and Leiden algorithms. If not otherwise stated, the results for the EC algorithm uses the best possible initial partitioning C.

  5. 5.

    For details please refer to: https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb.

  6. 6.

    https://www.soscip.org/.

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 171-180. STOC ’00, Association for Computing Machinery, New York, NY, USA (2000). https://doi.org/10.1145/335305.335326

  2. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017). https://www.sciencedirect.com/science/article/pii/S1568494617300546

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 585–591. NIPS’01, MIT Press, Cambridge, MA, USA (2001)

    Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), 10008 (2008)

    Article  MATH  Google Scholar 

  5. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques and applications (2018)

    Google Scholar 

  7. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. CIKM ’15, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2806416.2806512

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

  9. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Syst. 151, 78–94 (2018). https://doi.org/10.1016/j.knosys.2018.03.022

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks (2016)

    Google Scholar 

  11. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications (2018)

    Google Scholar 

  12. Kamiński, B., Kraiński, l., Prałat, P., Théberge, F.: A multi-purposed unsupervised framework for comparing embeddings of undirected and directed graphs (2021). https://arxiv.org/abs/2112.00075

  13. Kamiński, B., Olczak, T., Pankratz, B., Prałat, P., Théberge, F.: Properties and performance of the abcde random graph model with community structure (2022). https://arxiv.org/abs/2203.14899

  14. Kaminski, B., Pankratz, B., Pralat, P., Theberge, F.: Modularity of the abcd random graph model with community structure (2022). https://arxiv.org/abs/2203.01480

  15. Kamiński, B., Prałat, P., Théberge, F.: An unsupervised framework for comparing graph embeddings. J. Complex Netw. 8(5), cnz043 (2020)

    Google Scholar 

  16. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (abcd)-fast random graph model with community structure. Netw. Sci. 1–26 (2021)

    Google Scholar 

  17. Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks. Chapman and Hall/CRC (2021)

    Google Scholar 

  18. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5) (2009). https://doi.org/10.1103/PhysRevE.80.056117

  19. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection (2010). https://arxiv.org/abs/1004.3539

  20. Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  MATH  Google Scholar 

  21. McCarthy, A.D., Chen, T., Ebner, S.: An exact no free lunch theorem for community detection. In: Complex Networks and Their Applications VIII, pp. 176–187. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-36687-2_15

  22. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017). https://doi.org/10.21105/joss.00205

  23. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006). https://doi.org/10.1073/pnas.0601602103

  24. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939751

  25. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community detection in networks. Sci. Adv. 3(5), e1602548 (2017). https://doi.org/10.1126/sciadv.1602548

  26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014). https://doi.org/10.1145/2623330.2623732

  27. Poulin, V., Théberge, F.: Ensemble clustering for graphs: comparisons and applications. Appl. Netw. Sci. 4(1) (2019). https://doi.org/10.1007/s41109-019-0162-z

  28. Rasmussen, C.E.: The infinite gaussian mixture model. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, pp. 554–560. NIPS’99, MIT Press, Cambridge, MA, USA (1999)

    Google Scholar 

  29. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000). https://science.sciencemag.org/content/290/5500/2323

  30. Tandon, A., Albeshri, A., Thayananthan, V., Alhalabi, W., Radicchi, F., Fortunato, S.: Community detection in networks using graph embeddings. Phys. Rev. E 103, 022316 (2021). https://link.aps.org/doi/10.1103/PhysRevE.103.022316

  31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line. Proceedings of the 24th International Conference on World Wide Web (2015). https://doi.org/10.1145/2736277.2741093

  32. Traag, V., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (03 2019)

    Google Scholar 

  33. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  34. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth (2012). https://arxiv.org/abs/1205.6233

Download references

Acknowledgements

Hardware used for the computations was provided by the SOSCIP consortium. Launched in 2012, the SOSCIP consortium is a collaboration between Ontario’s research-intensive post-secondary institutions and small- and medium-sized enterprises (SMEs) across the province. Working together with the partners, SOSCIP is driving the uptake of AI and data science solutions and enabling the development of a knowledge-based and innovative economy in Ontario by supporting technical skill development and delivering high-quality outcomes. SOSCIP supports industrial-academic collaborative research projects through partnership-building services and access to leading-edge advanced computing platforms, fuelling innovation across every sector of Ontario’s economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Pankratz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pankratz, B., Kamiński, B., Prałat, P. (2023). Community Detection Supported by Node Embeddings (Searching for a Suitable Method). In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics