Skip to main content

Specifics of Applying the Fragility Theory to Technical Systems and Structures

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference on Construction, Architecture and Technosphere Safety (ICCATS 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 308))

  • 290 Accesses

Abstract

The paper presents the features of applying the Nassim Taleb’s fragility theory to technical systems and structures. This theory allows analyzing stability and survivability of an object subjected to exceptionally large shock whose likelihood is close to impossible. For example, when an existing integral system (or a set of such systems), designed according to current standards, starts experiencing the impact of loads that have qualitatively changed their nature (for example, due to global climate change). The nature of catastrophes is associated with a strong interdependence of ongoing events. The concept of fragility can be used in risk analysis of technical systems for which loss distribution curves are considered, where losses are described by positive numbers and the right tail of the distribution is considered. Fragility, in the context of the problem under consideration, lies in the incorrect calculation of the risk from large-scale negative events. This is the so-called “simulation fragility”. That is, the systems are “fragile” to inaccuracies in estimating the distribution of stressors, and, consequently, to modeling errors, since this inaccuracy increases the likelihood of loads and impacts exceeding the design limits, leading to a greater likelihood of system failure. Fragility can be used to measure the non-linear response to a change in a model parameter by correlating fragility with model error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taleb NN (2015) Antifragility. How to capitalize on chaos. LLC “Publishing Group “Azbuka-Atticus”, Moscow

    Google Scholar 

  2. Taleb NN (2014) Silent risk: lectures on fat tails, (Anti) fragility, and asymmetric exposures. SSRN Electron J

    Google Scholar 

  3. Taleb NN, Douady R (2013) Mathematical definition, mapping, and detection of (anti) fragility. Quant Financ 13(11):1677–1689

    Article  MathSciNet  MATH  Google Scholar 

  4. Bevrani H, Anichkin K (2005) Estimation of the parameters of distributions with heavy tails using empirical distribution. In: Riznichenko GY (ed) Proc of the XII international conference of “mathematics. a computer. education”, vol 2. Scientific Publishing Center “Regular and Chaotic Dynamics”, Izhevsk

    Google Scholar 

  5. Papkov BV, Kulikov AL, Osokin VL (2018) Estimation of probabilities and risk of rare events in the electric power industry. In: Proceedings of the 90th meeting of the international scientific “methodological issues of researching the reliability of large power systems”

    Google Scholar 

  6. Timashev SA (2020) Black-Swan type catastrophes and antifragility/supra-resilience of urban socio-technical infrastructures. IOP Conf Ser: Mater Sci Eng 972:012001

    Article  Google Scholar 

  7. Vladimirov VA, Vorobyov YL et al (2000) Risk management: risk. sustainable development. synergetics. Nauka, Moscow

    Google Scholar 

  8. Arnold VI (1990) Theory of catastrophes. Nauka, Moscow

    Google Scholar 

  9. Alekseev YuK (1990) Introduction to the theory of catastrophes. Finance and statistics, Moscow

    Google Scholar 

  10. Kennie HJ (2014) Engineering antifragile systems: a change in design philosophy. Proc Comp Sci 32:870–875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Timashev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Timashev, S., Bushinskaya, A. (2023). Specifics of Applying the Fragility Theory to Technical Systems and Structures. In: Radionov, A.A., Ulrikh, D.V., Timofeeva, S.S., Alekhin, V.N., Gasiyarov, V.R. (eds) Proceedings of the 6th International Conference on Construction, Architecture and Technosphere Safety. ICCATS 2022. Lecture Notes in Civil Engineering, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-031-21120-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21120-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21119-5

  • Online ISBN: 978-3-031-21120-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics