Skip to main content

Trade-Off of Networks on Weighted Space Analyzed via a Method Mimicking Human Walking Track Superposition

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13627))

  • 315 Accesses

Abstract

This study proposes a method for constructing networks with a small total weighted length and total detour rate by mimicking human walking track superposition. The present study aims to contribute to the scarce literature on multiple objectives, the total weighted length and the total detour rate, by allowing branching vertices on weighted space. The weight on space represents the spatial difference in the implementation cost, such as buildings, terrains, and land price. In modern society, we need to design a new transportation network while considering these constraints so that the network has a low total weighted length that enables a low implementation cost and a low total detour rate that leads to high efficiency. This study contributes to this requirement. The proposed method outputs solutions with various combinations of the total weighted length and the total detour rate. It approximates the Pareto frontier by connecting inherent non-dominated solutions. This approximation enables the analysis of the relationship between the weighted space and the limit of effective networks the space can generate quantitatively. Several experiments are carried out, and the result infers that the area with a huge weight significantly affects the trade-off relationship between the total weighted length and the total detour rate. Quantitatively revealing the trade-off relationship between the total weighted length and the total detour rate is helpful in managerial situations under certain constraints, including the budget, needed operational performance, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrote, L., Martins, L., Nunes, U.J., Zachariasen, M.: Weighted Euclidean Steiner trees for disaster-aware network design. In: 15th International Conference on the Design of Reliable Communication Networks (DRCN), pp. 138–145. IEEE, Coimbra, Portugal (2019). https://doi.org/10.1109/DRCN.2019.8713664

  2. Tabata, S., Arai, T., Honma, K., Imai, K.: A heuristic for the weighted Steiner tree problem by using random Delaunay networks. J. City Plan Inst. Japan 55(3), 459–466 (2020). https://doi.org/10.11361/journalcpij.55.459

    Article  Google Scholar 

  3. Helbing, D., Molnár, P., Farkas, I., Bolay, K.: Active walker model for the formation of human and animal trail systems. Phys. Rev. E 56, 2527–2539 (1991). https://doi.org/10.1002/bs.3830360405

    Article  Google Scholar 

  4. Helbing, D., Keltsch, J., Molnár, P.: Modelling the evolution of human trail systems. Nature 388, 47–50 (1997). https://doi.org/10.1038/40353

    Article  Google Scholar 

  5. Helbing, D., Molnár, P., Farkas, I., Bolay, K.: Self-organizing pedestrian movement. Environ. Plan B: Plan. Des. 28, 361–383 (2001). https://doi.org/10.1068/b2697

    Article  Google Scholar 

  6. Tabata, S., Arai, T., Honma, K., Imai, K.: Method for constructing cost-effective networks by mimicking human walking track superposition. J. Asian Archit. Build Eng. (2022). https://doi.org/10.1080/13467581.2022.2047056

    Article  Google Scholar 

  7. Watanabe, D.: Evaluating the configuration and the travel efficiency on proximity graphs as transportation networks. Forma 23, 81–87 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Nakagaki, T., Kobayashi, R., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107(1), 1–5 (2004). https://doi.org/10.1016/S0301-4622(03)00189-3

    Article  Google Scholar 

  9. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Biol. Sci. 271(1554), 2305–2310 (2004). https://doi.org/10.1098/rspb.2004.2856

    Article  Google Scholar 

  10. Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in Physarum amoebae. Theory Biosci. 127, 89–94 (2008). https://doi.org/10.1007/s12064-008-0037-9

    Article  Google Scholar 

  11. Tero, A., et al.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010). https://doi.org/10.1126/science.1177894

    Article  MathSciNet  MATH  Google Scholar 

  12. Schaur, E.: IL39 Non-planned settlements characteristic features. Institute for Lightweight Structures, University of Stuttgart, Stuttgart, pp. 36–51 (1991)

    Google Scholar 

  13. Carmi, P., Chaitman-Yerushalmi, L.: Minimum weight Euclidean t-spanner is NP-hard. J. Discrete Algorithms 22, 30–42 (2013). https://doi.org/10.1016/j.jda.2013.06.010

  14. Le, H., Solomon, S.: Truly optimal Euclidean spanners. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1078–1100. IEEE, Baltimore, MD, USA (2019). https://doi.org/10.1109/FOCS.2019.00069

  15. Bhore, S., Tóth, C.D.: On Euclidean Steiner (1+ε)-spanners. In: 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021), pp. 13:1–13:16. Schloss Dagstuhl, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.13

  16. Scott, A.J.: The optimal network problem: some computational procedures. Transp. Res. 3(2), 201–210 (1969). https://doi.org/10.1016/0041-1647(69)90152-X

    Article  Google Scholar 

  17. Ridley, T.M.: An investment policy to reduce the travel time in a transportation network. Transp. Res. 2(4), 409–424 (1968). https://doi.org/10.1016/0041-1647(68)90105-6

    Article  Google Scholar 

  18. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984). https://doi.org/10.1287/trsc.18.1.1

    Article  Google Scholar 

  19. Lee, Y.-J., Vuchic, V.R.: Transit network design with variable demand. J. Transp. Eng. 131, 1 (2005). https://doi.org/10.1061/(ASCE)0733-947X(2005)131:1(1)

    Article  Google Scholar 

  20. Nowdeh, S.A., et al.: Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Appl. Soft. Comput. 77, 761–779 (2019). https://doi.org/10.1016/j.asoc.2019.02.003

    Article  Google Scholar 

  21. Sahebjamnia, N., Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M.: Sustainable tire closed-loop supply chain network design: hybrid metaheuristic algorithms for large-scale networks. J. Clean Prod. 196, 273–296 (2018). https://doi.org/10.1016/j.jclepro.2018.05.245

    Article  Google Scholar 

  22. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations Concepts and Applications of Voronoi Diagrams, 2nd edn., p. 391. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  23. Imai, K., Fujii, A.: A study on Voronoi diagrams with two-dimensional obstacles. J. City Plan Inst. Japan 42(3), 457–462 (2007). https://doi.org/10.11361/journalcpij.42.3.457. (in Japanese)

    Article  Google Scholar 

  24. Chenavier, N., Devilers, O.: Stretch factor in a planar Poisson-Delaunay triangulation with a large intensity. Adv. Appl. Probab. 50(1), 35–56 (2018). https://doi.org/10.1017/apr.2018.3

    Article  MathSciNet  MATH  Google Scholar 

  25. Imai, K., Fujii, A.: An approximate solution of restricted Weber problems with weighted regions. J. City Plan. Inst. Japan 43(3), 85–90 (2008). https://doi.org/10.11361/journalcpij.43.3.85. (in Japanese)

    Article  Google Scholar 

  26. Tabata, S., Arai, T., Honma, K., Imai, K.: The influence of walking environments on walking tracks through reproduction of desire paths. J. City Plan Inst. Japan 54(3), 1562–1569 (2020). https://doi.org/10.11361/journalcpij.54.1562. (in Japanese)

    Article  Google Scholar 

  27. Al-Widyan, F., Al-Ani, A., Kirchner, N., Zeibots, M.: An effort-based evaluation of pedestrian route selection. Sci. Res. Essays 12(4), 42–50 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Tabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabata, S. (2022). Trade-Off of Networks on Weighted Space Analyzed via a Method Mimicking Human Walking Track Superposition. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics