Skip to main content

Back to the Future of Neuropsychopharmacology

  • Chapter
  • First Online:
Drug Development in Psychiatry

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 30))

  • 638 Accesses

Abstract

Disappointments in translating preclinical findings into clinical efficacy have triggered a number of changes in neuroscience drug discovery ranging from investments diverted to other therapeutic areas to reduced reliance on efficacy claims derived from preclinical models. In this chapter, we argue that there are several existing examples that teach us on what needs to be done to improve the success rate. We advocate the reverse engineering approach that shifts the focus from preclinical efforts to “model” human disease states to pharmacodynamic activity as a common denominator in the journey to translate clinically validated phenomena to preclinical level and then back to humans. Combined with the research rigor, openness, and transparency, this reverse engineering approach is well set to bring new effective and safe medications to patients in need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, Weiden PJ. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1999;156:1686–96.

    Article  CAS  PubMed  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. American Psychiatric Association; 2020.

    Google Scholar 

  3. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–14.

    Article  CAS  PubMed  Google Scholar 

  4. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein E, Waber B. The truth about open offices. Harv Bus Rev. 2019;97:83.

    Google Scholar 

  6. Bespalov A, Müller R, Relo AL, Hudzik T. Drug tolerance: a known unknown in translational neuroscience. Trends Pharmacol Sci. 2016b;37:364–78.

    Article  CAS  PubMed  Google Scholar 

  7. Bespalov A, Steckler T. Pharmacology of anxiety or pharmacology of elevated plus maze? Biol Psychiatry. 2021;89:e73.

    Article  PubMed  Google Scholar 

  8. Bespalov A, Steckler T, Altevogt B, Koustova E, Skolnick P, Deaver D, Millan MJ, Bastlund JF, Doller D, Witkin J, Moser P, O’Donnell P, Ebert U, Geyer MA, Prinssen E, Ballard T, Macleod M. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat Rev Drug Discov. 2016a;15:516.

    Article  CAS  PubMed  Google Scholar 

  9. Blokland A, Sambeth A, Prickaerts J, Riedel WJ. Why an M1 antagonist could be a more selective model for memory impairment than scopolamine. Front Neurol. 2016;7:10–3.

    Article  Google Scholar 

  10. Borsini F, Podhorna J, Marazziti D. Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology. 2002;163:121–41.

    Article  CAS  PubMed  Google Scholar 

  11. Brown AJH, Bradley SJ, Marshall FH, Brown GA, Bennett KA, Brown J, Cansfield JE, Cross DM, de Graaf C, Hudson BD, et al. From structure to clinic: design of a muscarinic M1 receptor agonist with potential to treatment of Alzheimer’s disease. Cell. 2021;184:5886–901.

    Article  CAS  PubMed  Google Scholar 

  12. Buccafusco JJ. The revival of scopolamine reversal for the assessment of cognition-enhancing drugs. In: Buccafusco JJ, editor. Methods of behavior analysis in neuroscience. Boca Raton, FL: CRC Press/Taylor & Francis; 2009.

    Google Scholar 

  13. Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505:612–3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13:419–31.

    Article  CAS  PubMed  Google Scholar 

  15. Ebert U, Kirch W. Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Investig. 1998;28:944–9.

    Article  CAS  Google Scholar 

  16. Egan MF, Zhao X, Smith A, Troyer MD, Uebele VN, Pidkorytov V, Cox K, Murphy M, Snavely D, Lines C, Michelson D. Randomized controlled study of the T-type calcium channel antagonist MK-8998 for the treatment of acute psychosis in patients with schizophrenia. Hum Psychopharmacol. 2013;28:124–33.

    Article  CAS  PubMed  Google Scholar 

  17. Erhel F, Scanff A, Naudet F. The evidence base for psychotropic drugs approved by the European Medicines Agency: a meta-assessment of all European Public Assessment Reports. Epidemiol Psychiatr Sci. 2020;29:e120.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Felder CC, Goldsmith PJ, Jackson K, Sanger HE, Evans DA, Mogg AJ, Broad LM. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology. 2018;136:449–58.

    Article  CAS  PubMed  Google Scholar 

  19. Franco A, Malhotra N, Simonovits G. Social science. Publication bias in the social sciences: unlocking the file drawer. Science. 2014;345:1502–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gardell LR, Vanover KE, Pounds L, Johnson RW, Barido R, Anderson GT, Veinbergs I, Dyssegaard A, Brunmark P, Tabatabaei A, Davis RE, Brann MR, Hacksell U, Bonhaus DW. ACP-103, a 5-hydroxytryptamine 2A receptor inverse agonist, improves the antipsychotic efficacy and side-effect profile of haloperidol and risperidone in experimental models. JPET. 2007;322:862–70.

    Article  CAS  Google Scholar 

  21. Garfield AS, Heisler LK. Pharmacological targeting of the serotonergic system for the treatment of obesity. J Physiol. 2009;587:49–60.

    Article  CAS  PubMed  Google Scholar 

  22. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, Kovar K-A. Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry. 2005;38:301–11.

    Article  CAS  PubMed  Google Scholar 

  23. Gouzoulis-Mayfrank E, Thelen B, Habermeyer E, Kunert HJ, Kovar KA, Lindenblatt H, Hermle L, Spitzer M, Sass H. Psychopathological, neuroendocrine and autonomic effects of 3, 4-methylenedioxyethylamphetamine (MDE), psilocybin and d-methamphetamine in healthy volunteers Results of an experimental double-blind placebo-controlled study. Psychopharmacology. 1999;142:41–50.

    Article  CAS  PubMed  Google Scholar 

  24. Harel BT, Pietrzak RH, Snyder PJ, Maruff P. Effect of cholinergic neurotransmission modulation on visual spatial paired associate learning in healthy human adults. Psychopharmacology. 2013;228:673–83.

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto K. Targeting of α7 nicotinic acetylcholine receptors in the treatment of schizophrenia and the use of auditory sensory gating as a translational biomarker. Curr Pharm Des. 2015;21:3797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol. 2015;23:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Howland RH. Serendipity and psychopharmacology. J Psychosoc Nurs Ment Health Serv. 2010;48:9–12.

    PubMed  Google Scholar 

  28. Inglis F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl. 2012;127:45–63.

    Google Scholar 

  29. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20:201–25.

    Article  CAS  PubMed  Google Scholar 

  30. Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, Porteous DJ. DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull. 2011;37:14–20.

    Article  PubMed  Google Scholar 

  31. Jones CA, Watson DJG, Fone KFC. Animal models of schizophrenia. Br J Pharmacol. 2011;164:1162–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalueff A, Nutt DJ. Role of GABA in memory and anxiety. Depress Anxiety. 1996/1997;4:100–10.

    Article  PubMed  Google Scholar 

  33. Kelmendi B, Kaye AP, Pittenger C, Kwan AC. Psychedelics. Curr Biol. 2021;32:R55–71.

    Google Scholar 

  34. Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat Rev Drug Disc. 2015;14:815–6.

    Article  CAS  Google Scholar 

  35. Kleiman RJ, Ehlers MD. Data gaps limit the translational potential of preclinical research. Sci Transl Med. 2016;8:320ps1.

    Article  PubMed  Google Scholar 

  36. Leikin JB, Krantz AJ, Zell-Kanter M, Barkin RL, Hryhorczuk DO. Med Toxicol Adverse Drug Exp. 1989;4:324–50.

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Munoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G. History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry. 2005;17:113–35.

    Article  PubMed  Google Scholar 

  38. Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a review. Schizophrenia Bull. 1976;2:19–76.

    Article  CAS  Google Scholar 

  39. Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol. 2014;24:645–92.

    Article  CAS  PubMed  Google Scholar 

  40. Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R. An aging interventions testing program: study design and interim report. Aging Cell. 2007;6:565–75.

    Article  CAS  PubMed  Google Scholar 

  41. Mintzer J, Lanctôt KL, Scherer RW, Rosenberg PB, Herrmann N, van Dyck CH, Padala PR, Brawman-Mintzer O, Porsteinsson AP, Lerner AJ, Craft S, Levey AI, Burke W, Perin J, Shade D, ADMET 2 Research Group. Effect of methylphenidate on apathy in patients with Alzheimer disease: the ADMET 2 randomized clinical trial. JAMA Neurol. 2021;78:1324–32.

    Article  PubMed  Google Scholar 

  42. Möller HJ. Risperidone: a review. Expert Opin Pharmacother. 2005;6:803–18.

    Article  PubMed  Google Scholar 

  43. Ögren SO, Fuxe K, Agnati LF, Gustafssons JA, Jonsson G, Holm AC. Reevaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs. J Neural Transm. 1979;46:85–103.

    Article  PubMed  Google Scholar 

  44. Reynolds GP, Zhang ZJ, Zhang XB. Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet. 2002;359:2086–7.

    Article  CAS  PubMed  Google Scholar 

  45. Robinson E. Psychopharmacology: from serendipitous discoveries to rationale design, but what next? Brain Neurosci Adv. 2018;2:1–11.

    Article  Google Scholar 

  46. Rodgers P, Collings A. What have we learned? elife. 2021;10:e75830.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosenberg PB, Lanctôt KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, Mintzer JE, Investigators ADMET. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74:810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rush AJ, Ibrahim HM. Speculations on the future of psychiatric diagnosis. J Nerv Ment Dis. 2018;206:481–7.

    Article  PubMed  Google Scholar 

  49. Stanford SC. Some reasons why preclinical studies of psychiatric disorders fail to translate: what can be rescued from the misunderstanding and misuse of animal ‘models’? Alt Lab Animals. 2020;48:106–15.

    Article  Google Scholar 

  50. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain. 2016;139:1325–47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Soder HE, Cooper JA, Lopez-Gamundi P, Hoots JK, Nunez C, Lawlor VM, Lane SD, Treadway MT, Wardle MC. Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacology. 2021;46:1078–85.

    Article  CAS  PubMed  Google Scholar 

  52. Talpos JC, Aerts N, Fellini L, Steckler T. A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol Biochem Behav. 2014;122:97–106.

    Article  CAS  PubMed  Google Scholar 

  53. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature. 1995;374:542–6.

    Article  CAS  PubMed  Google Scholar 

  54. Trunnell ER, Carvalho C. The forced swim test has poor accuracy for identifying novel antidepressants. Drug Disc Today. 2021;26:2898–904.

    Article  CAS  Google Scholar 

  55. Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, Del Tredici AL, Piu F, Schiffer HH, Ott TR, Burstein ES, Uldam AK, Thygesen MB, et al. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy) phenylmethyl) carbamide (2R, 3R)-dihydroxybutanedioate (2: 1)(ACP-103), a novel 5-hydroxytryptamine2A receptor inverse agonist. J Pharmacol Exp Ther. 2006;317:910–8.

    Article  CAS  PubMed  Google Scholar 

  56. Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An overview of animal models related to schizophrenia. Can J Psychiatr. 2019;64:5–17.

    Article  Google Scholar 

  57. Wolbach AB Jr, Miner EJ, Isbell H. Comparison of psilocin with psilocybin, mescaline and LSD-25. Psychopharmacologia. 1962;3:219–23.

    Article  CAS  PubMed  Google Scholar 

  58. Yanez M, Padin JF, Arranz-Tagarro JA, Camina M, Laguna R. History and therapeutic use of MAO-A inhibitors: a historical perspective of MAO-A inhibitors as antidepressant drug. Curr Topics Med Chem. 2012;12:2275–82.

    Article  CAS  Google Scholar 

  59. Yuan X, Yamada K, Ishiyama-Shigemoto S, Koyama W, Nonaka K. Identification of polymorphic loci in the promoter region of the serotonin 5-HT(2c) receptor gene and their association with obesity and type II diabetes. Diabetologia. 2000;43:373–6.

    Article  CAS  PubMed  Google Scholar 

  60. Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, Manji HK, Charney DS. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006;163:153–5.

    Article  PubMed  Google Scholar 

  61. Zhu T. Challenges of psychiatry drug development and the role of human pharmacology models in early development—a drug developer’s perspective. Front Psych. 2021;11:562660.

    Article  Google Scholar 

Download references

Conflicts of Interest

AB has financial interests in and serves as managing director and CSO/CMO of Exciva GmbH, a pharmaceutical company focused on treating behavioral and psychological symptoms of dementia, and managing director of PAASP GmbH (Heidelberg, Germany), a company focused on developing and providing assessment and accreditation of scientific practice. MvG owns stock of AbbVie, uniQure, and Charles River Laboratories. TS is an employee of J&J and holds stock from J&J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Bespalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bespalov, A., van Gaalen, M., Steckler, T. (2023). Back to the Future of Neuropsychopharmacology. In: Macaluso, M., Preskorn, S.H., Shelton, R.C. (eds) Drug Development in Psychiatry. Advances in Neurobiology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-031-21054-9_9

Download citation

Publish with us

Policies and ethics