Skip to main content

Vertebrae Localization, Segmentation and Identification Using a Graph Optimization and an Anatomic Consistency Cycle

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13583))

Included in the following conference series:

Abstract

Vertebrae localization, segmentation and identification in CT images is key to numerous clinical applications. While deep learning strategies have brought to this field significant improvements over recent years, transitional and pathological vertebrae are still plaguing most existing approaches as a consequence of their poor representation in training datasets. Alternatively, proposed non-learning based methods take benefit of prior knowledge to handle such particular cases. In this work we propose to combine both strategies. To this purpose we introduce an iterative cycle in which individual vertebrae are recursively localized, segmented and identified using deep networks, while anatomic consistency is enforced using statistical priors. In this strategy, the transitional vertebrae identification is handled by encoding their configurations in a graphical model that aggregates local deep-network predictions into an anatomically consistent final result. Our approach achieves the state-of-the-art results on the VerSe20 challenge benchmark, and outperforms all methods on transitional vertebrae as well as the generalization to the VerSe19 challenge benchmark. Furthermore, our method can detect and report inconsistent spine regions that do not satisfy the anatomic consistency priors. The code and model are available for research purposes. (https://gitlab.inria.fr/spine/vertebrae_segmentation)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Arif, S.M.R., Gundry, M., Knapp, K., Slabaugh, G.: Improving an active shape model with random classification forest for segmentation of cervical vertebrae. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 3–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55050-3_1

  2. Aslan, M.S., Ali, A., Chen, D., Arnold, B., Farag, A.A., Xiang, P.: 3d vertebrae segmentation using graph cuts with shape prior constraints. In: ICIP. IEEE (2010)

    Google Scholar 

  3. Benjelloun, M., Mahmoudi, S., Lecron, F.: A framework of vertebra segmentation using the active shape model-based approach. IJBI (2011)

    Google Scholar 

  4. Bromiley, P.A., Kariki, E.P., Adams, J.E., Cootes, T.F.: Fully automatic localisation of vertebrae in ct images using random forest regression voting. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 51–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55050-3_5

  5. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3d deformable hierarchical model. TMI (2015)

    Google Scholar 

  6. Chen, D., Bai, Y., Zhao, W., Ament, S., Gregoire, J., Gomes, C.: Deep reasoning networks for unsupervised pattern de-mixing with constraint reasoning. In: ICML. PMLR (2020)

    Google Scholar 

  7. Chen, H., et al: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_63

  8. Chen, Y., Gao, Y., Li, K., Zhao, L., Zhao, J.: vertebrae identification and localization utilizing fully convolutional networks and a hidden markov model. TMI (2019)

    Google Scholar 

  9. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numerische mathematik (1959)

    Google Scholar 

  10. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73

  11. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_33

  12. Graham, J., Cooper, D., Taylor, C., Cootes, T.: Active shape models their training and applications. CVIU (1995)

    Google Scholar 

  13. Jakubicek, R., Chmelik, J., Jan, J., Ourednicek, P., Lambert, L., Gavelli, G.: Learning-based vertebra localization and labeling in 3d CT data of possibly incomplete and pathological spines. Comput. Methods Programs Biomed 123 (2020)

    Google Scholar 

  14. Janssens, R., Zeng, G., Zheng, G.: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3d fully convolutional networks. In: ISBI (2018)

    Google Scholar 

  15. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. MedIA (2009)

    Google Scholar 

  16. Knez, D., Likar, B., Pernuš, F., Vrtovec, T.: Computer-assisted screw size and insertion trajectory planning for pedicle screw placement surgery. TMI (2016)

    Google Scholar 

  17. Lessmann, N., Van Ginneken, B., De Jong, P.A., IÅ¡gum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. MedIA (2019)

    Google Scholar 

  18. Liao, H., Mesfin, A., Luo, J.: Joint vertebrae identification and localization in spinal CT images by combining short-and long-range contextual information. TMI (2018)

    Google Scholar 

  19. Löffler, M.T., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2 (2020)

    Google Scholar 

  20. Mader, A.O., Lorenz, C., von Berg, J., Meyer, C.: Automatically localizing a large set of spatially correlated key points: a case study in spine imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 384–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_43

  21. Masuzawa, N., Kitamura, Y., Nakamura, K., Iizuka, S., Simo-Serra, E.: Automatic segmentation, localization, and identification of vertebrae in 3D CT images using cascaded convolutional neural networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 681–690. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_66

  22. McCouat, J., Glocker, B.: Vertebrae detection and localization in CT with two-stage CNNS and dense annotations. arXiv preprint arXiv:1910.05911 (2019)

  23. Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S.: Learning a statistical full spine model from partial observations. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 122–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_10

  24. Mohammed, E., Meng, D., Pujades, S.: Morphology-based individual vertebrae classification. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 134–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_11

  25. Payer, C., Stern, D., Bischof, H., Urschler, M.: Coarse to fine vertebrae localization and segmentation with spatialconfiguration-net and u-net. In: VISIGRAPP (5: VISAPP) (2020)

    Google Scholar 

  26. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+ pose model. TMI (2013)

    Google Scholar 

  27. Sekuboyina, A., et al.: Verse: a vertebrae labelling and segmentation benchmark for multi-detector CT images. MedIA (2021)

    Google Scholar 

  28. Sekuboyina, A., et al.: Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 649–657. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_74

  29. Sekuboyina, A., Rempfler, M., Valentinitsch, A., Menze, B.H., Kirschke, J.S.: Labeling vertebrae with two-dimensional reformations of multidetector CT images: an adversarial approach for incorporating prior knowledge of spine anatomy. Radiol. Artif. Intell. 2 (2020)

    Google Scholar 

  30. Tao, R., Liu, W., Zheng, G.: Spine-transformers: vertebra labeling and segmentation in arbitrary field-of-view spine CTS via 3d transformers. MedIA (2022)

    Google Scholar 

  31. Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. TMI (2003)

    Google Scholar 

  32. Uçar, D., et al.: Retrospective cohort study of the prevalence of lumbosacral transitional vertebra in a wide and well-represented population. Arthritis (2013)

    Google Scholar 

  33. Wang, F., Zheng, K., Lu, L., Xiao, J., Wu, M., Miao, S.: Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization. In: Proceedings of the IEEE/CVF CVPR (2021)

    Google Scholar 

  34. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Meng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2932 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, D., Mohammed, E., Boyer, E., Pujades, S. (2022). Vertebrae Localization, Segmentation and Identification Using a Graph Optimization and an Anatomic Consistency Cycle. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics