Skip to main content

Secondary Complications: Pancreas Versus Islet Transplantation

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

Follow-up studies after pancreas and islet transplantation have shown that these transplants can improve or worsen the development and progression of secondary diabetic complications. A favorable outcome has been noted during the initial stages of retinopathy in islet transplant recipients; there has also been a lack of progression of neuropathy and macroangiopathy following both pancreas and islet transplantation. While a beneficial long-term effect of pancreas transplantation on native and transplanted kidney function is well documented, the effect of islet transplantation is still less clear due to shorter follow-up and the use of more nephrotoxic immunosuppressants; the change from combined tacrolimus–sirolimus after islet transplantation as per the original Edmonton protocol to tacrolimus–mycophenolate mofetil maintenance therapy has improved kidney function. In islet transplantation, it has been shown that despite the absence of insulin independence, a favorable impact on secondary complications can be observed in the presence of C-peptide secretion. The limitations of studies comparing the impact of pancreas versus islet transplantation on secondary complications include the small numbers of subjects, the lack of randomized trials, and the complexity of comparisons with appropriate control groups. However, it is evident that stable glycemic control and restoration of even some partial endocrine function (i.e., C-peptide secretion in the presence of exogenous insulin administration after islet transplantation) have a positive impact on secondary diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/NEJM199309303291401.

    Article  Google Scholar 

  2. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9. https://doi.org/10.1056/NEJM200002103420603.

    Article  Google Scholar 

  3. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. https://doi.org/10.1056/NEJMoa052187.

    Article  PubMed  Google Scholar 

  4. El-Hennawy H, Stratta RJ, Smith F. Exocrine drainage in vascularized pancreas transplantation in the new millennium. World J Transplant. 2016;6(2):255–71. https://doi.org/10.5500/wjt.v6.i2.255.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8. https://doi.org/10.1056/NEJM200007273430401.

    Article  CAS  PubMed  Google Scholar 

  6. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58. https://doi.org/10.1056/NEJMra021678. PMID: 14702427.

    Article  CAS  PubMed  Google Scholar 

  7. Rickels MR, Stock PG, de Koning EJP, Piemonti L, Pratschke J, Alejandro R, Bellin MD, Berney T, Choudhary P, Johnson PR, Kandaswamy R, Kay TWH, Keymeulen B, Kudva YC, Latres E, Langer RM, Lehmann R, Ludwig B, Markmann JF, Marinac M, Odorico JS, Pattou F, Senior PA, Shaw JAM, Vantyghem MC, White S. Defining outcomes for β-cell replacement therapy in the treatment of diabetes: a consensus report on the Igls criteria from the IPITA/EPITA opinion leaders workshop. Transplantation. 2018;102(9):1479–86. https://doi.org/10.1097/TP.0000000000002158.

    Article  PubMed  PubMed Central  Google Scholar 

  8. MacKinnon JR, McKillop G, O’Brien C, Swa K, Butt Z, Nelson P. Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmol Scand. 2000;78(4):386–9. https://doi.org/10.1034/j.1600-0420.2000.078004386.x.

    Article  CAS  PubMed  Google Scholar 

  9. Gracner T. Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica. 2004;218(4):237–42. https://doi.org/10.1159/000078613.

    Article  PubMed  Google Scholar 

  10. Venturini M, Fiorina P, Maffi P, Losio C, Vergani A, Secchi A, Del Maschio A. Early increase of retinal arterial and venous blood flow velocities at color Doppler imaging in brittle type 1 diabetes after islet transplant alone. Transplantation. 2006;81(9):1274–7. https://doi.org/10.1097/01.tp.0000208631.63235.6a.

    Article  PubMed  Google Scholar 

  11. Venturini M, Losio C, Del Maschio A, Maffi P, Fiorina P, Gremizzi C, Secchi A. Kidney-pancreas transplantation does not improve retinal arterial flow velocities in type 1 diabetic uremic patients. Transplantation. 2010;89(2):261–3. https://doi.org/10.1097/TP.0b013e3181c09f7c.

    Article  PubMed  Google Scholar 

  12. Thompson DM, Meloche M, Ao Z, Paty B, Keown P, Shapiro RJ, Ho S, Worsley D, Fung M, Meneilly G, Begg I, Al Mehthel M, Kondi J, Harris C, Fensom B, Kozak SE, Tong SO, Trinh M, Warnock GL. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011;91(3):373–8. https://doi.org/10.1097/TP.0b013e31820437f3.

    Article  PubMed  Google Scholar 

  13. Louis TA, Lavori PW, Bailar JC 3rd, Polansky M. Crossover and self-controlled designs in clinical research. N Engl J Med. 1984;310(1):24–31. https://doi.org/10.1056/NEJM198401053100106.

    Article  CAS  PubMed  Google Scholar 

  14. Lee TC, Barshes NR, O’Mahony CA, Nguyen L, Brunicardi FC, Ricordi C, Alejandro R, Schock AP, Mote A, Goss JA. The effect of pancreatic islet transplantation on progression of diabetic retinopathy and neuropathy. Transplant Proc. 2005;37(5):2263–5. https://doi.org/10.1016/j.transproceed.2005.03.011.

    Article  CAS  PubMed  Google Scholar 

  15. Büscher C, Weis A, Wöhrle M, Bretzel RG, Cohen AM, Federlin K. Islet transplantation in experimental diabetes of the rat. XII. Effect on diabetic retinopathy. Morphological findings and morphometrical evaluation. Horm Metab Res. 1989;21(5):227–31. https://doi.org/10.1055/s-2007-1009200.

    Article  PubMed  Google Scholar 

  16. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care. 2014;37(10):2864–83. https://doi.org/10.2337/dc14-1296.

    Article  PubMed  PubMed Central  Google Scholar 

  17. American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S105–18. https://doi.org/10.2337/dc18-S010.

    Article  Google Scholar 

  18. Fiorina P, Folli F, Zerbini G, Maffi P, Gremizzi C, Di Carlo V, Socci C, Bertuzzi F, Kashgarian M, Secchi A. Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol. 2003;14(8):2150–8. https://doi.org/10.1097/01.asn.0000077339.20759.a3.

    Article  PubMed  Google Scholar 

  19. Ido Y, Vindigni A, Chang K, Stramm L, Chance R, Heath WF, DiMarchi RD, Di Cera E, Williamson JR. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science. 1997;277(5325):563–6. https://doi.org/10.1126/science.277.5325.563.

    Article  CAS  PubMed  Google Scholar 

  20. Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jörnvall H. Role of C-peptide in human physiology. Am J Physiol Endocrinol Metab. 2000;278(5):E759–68. https://doi.org/10.1152/ajpendo.2000.278.5.E759.

    Article  CAS  PubMed  Google Scholar 

  21. Sjöquist M, Huang W, Johansson BL. Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int. 1998;54(3):758–64. https://doi.org/10.1046/j.1523-1755.1998.00074.x.

    Article  PubMed  Google Scholar 

  22. Fiorina P, Venturini M, Folli F, Losio C, Maffi P, Placidi C, La Rosa S, Orsenigo E, Socci C, Capella C, Del Maschio A, Secchi A. Natural history of kidney graft survival, hypertrophy, and vascular function in end-stage renal disease type 1 diabetic kidney-transplanted patients: beneficial impact of pancreas and successful islet cotransplantation. Diabetes Care. 2005;28(6):1303–10. https://doi.org/10.2337/diacare.28.6.1303.

    Article  PubMed  Google Scholar 

  23. Lehmann R, Graziano J, Brockmann J, Pfammatter T, Kron P, de Rougemont O, Mueller T, Zuellig RA, Spinas GA, Gerber PA. Glycemic control in simultaneous islet-kidney versus pancreas-kidney transplantation in type 1 diabetes: a prospective 13-year follow-up. Diabetes Care. 2015;38(5):752–9. https://doi.org/10.2337/dc14-1686.

    Article  CAS  PubMed  Google Scholar 

  24. Senior PA, Zeman M, Paty BW, Ryan EA, Shapiro AM. Changes in renal function after clinical islet transplantation: four-year observational study. Am J Transplant. 2007;7(1):91–8. https://doi.org/10.1111/j.1600-6143.2006.01573.x.

    Article  CAS  PubMed  Google Scholar 

  25. Maffi P, Bertuzzi F, De Taddeo F, Magistretti P, Nano R, Fiorina P, Caumo A, Pozzi P, Socci C, Venturini M, del Maschio A, Secchi A. Kidney function after islet transplant alone in type 1 diabetes: impact of immunosuppressive therapy on progression of diabetic nephropathy. Diabetes Care. 2007;30(5):1150–5. https://doi.org/10.2337/dc06-1794.

    Article  CAS  PubMed  Google Scholar 

  26. Fervenza FC, Fitzpatrick PM, Mertz J, Erickson SB, Liggett S, Popham S, Wochos DN, Synhavsky A, Hippler S, Larson TS, Bagniewski SM, Velosa JA, Mayo Nephrology Collaborative Committee. Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Nephrol Dial Transplant. 2004;19(5):1288–92. https://doi.org/10.1093/ndt/gfh079.

    Article  CAS  PubMed  Google Scholar 

  27. Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol. 2001;281(4):F693–706. https://doi.org/10.1152/ajprenal.2001.281.4.F693.

    Article  CAS  PubMed  Google Scholar 

  28. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75. https://doi.org/10.1056/NEJM199807093390202.

    Article  CAS  PubMed  Google Scholar 

  29. Lablanche S, Vantyghem MC, Kessler L, Wojtusciszyn A, Borot S, Thivolet C, Girerd S, Bosco D, Bosson JL, Colin C, Tetaz R, Logerot S, Kerr-Conte J, Renard E, Penfornis A, Morelon E, Buron F, Skaare K, Grguric G, Camillo-Brault C, Egelhofer H, Benomar K, Badet L, Berney T, Pattou F, Benhamou PY, TRIMECO Trial Investigators. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(7):527–37. https://doi.org/10.1016/S2213-8587(18)30078-0.

    Article  CAS  PubMed  Google Scholar 

  30. Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, Chaloner K, Czarniecki CW, Goldstein JS, Hunsicker LG, Kaufman DB, Korsgren O, Larsen CP, Luo X, Markmann JF, Naji A, Oberholzer J, Posselt AM, Rickels MR, Ricordi C, Robien MA, Senior PA, Shapiro AM, Stock PG, Turgeon NA, Clinical Islet Transplantation Consortium. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230–40. https://doi.org/10.2337/dc15-1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fung MA, Warnock GL, Ao Z, Keown P, Meloche M, Shapiro RJ, Ho S, Worsley D, Meneilly GS, Al Ghofaili K, Kozak SE, Tong SO, Trinh M, Blackburn L, Kozak RM, Fensom BA, Thompson DM. The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report. Transplantation. 2007;84(1):17–22. https://doi.org/10.1097/01.tp.0000265502.92321.ab.

    Article  PubMed  Google Scholar 

  32. Kobashigawa JA, Miller LW, Russell SD, Ewald GA, Zucker MJ, Goldberg LR, Eisen HJ, Salm K, Tolzman D, Gao J, Fitzsimmons W, First R, Study Investigators. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am J Transplant. 2006;6(6):1377–86. https://doi.org/10.1111/j.1600-6143.2006.01290.x.

    Article  CAS  PubMed  Google Scholar 

  33. Gallon L, Perico N, Dimitrov BD, Winoto J, Remuzzi G, Leventhal J, Gaspari F, Kaufman D. Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF. Am J Transplant. 2006;6(7):1617–23. https://doi.org/10.1111/j.1600-6143.2006.01340.x.

    Article  CAS  PubMed  Google Scholar 

  34. Martin CL, Albers JW, Pop-Busui R, DCCT/EDIC Research Group. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):31–8. https://doi.org/10.2337/dc13-2114.

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy WR, Navarro X, Goetz FC, Sutherland DE, Najarian JS. Effects of pancreatic transplantation on diabetic neuropathy. N Engl J Med. 1990;322(15):1031–7. https://doi.org/10.1056/NEJM199004123221503.

    Article  CAS  PubMed  Google Scholar 

  36. Solders G, Tydén G, Persson A, Groth CG. Improvement of nerve conduction in diabetic neuropathy. A follow-up study 4 yr after combined pancreatic and renal transplantation. Diabetes. 1992;41(8):946–51. https://doi.org/10.2337/diab.41.8.946.

    Article  CAS  PubMed  Google Scholar 

  37. Müller-Felber W, Landgraf R, Scheuer R, Wagner S, Reimers CD, Nusser J, Abendroth D, Illner WD, Land W. Diabetic neuropathy 3 years after successful pancreas and kidney transplantation. Diabetes. 1993;42(10):1482–6. https://doi.org/10.2337/diab.42.10.1482.

    Article  PubMed  Google Scholar 

  38. Martinenghi S, Comi G, Galardi G, Di Carlo V, Pozza G, Secchi A. Amelioration of nerve conduction velocity following simultaneous kidney/pancreas transplantation is due to the glycaemic control provided by the pancreas. Diabetologia. 1997;40(9):1110–2. https://doi.org/10.1007/s001250050795.

    Article  CAS  PubMed  Google Scholar 

  39. Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol. 1997;42(5):727–36. https://doi.org/10.1002/ana.410420509.

    Article  CAS  PubMed  Google Scholar 

  40. Del Carro U, Fiorina P, Amadio S, De Toni Franceschini L, Petrelli A, Menini S, Martinelli Boneschi F, Ferrari S, Pugliese G, Maffi P, Comi G, Secchi A. Evaluation of polyneuropathy markers in type 1 diabetic kidney transplant patients and effects of islet transplantation: neurophysiological and skin biopsy longitudinal analysis. Diabetes Care. 2007;30(12):3063–9. https://doi.org/10.2337/dc07-0206.

    Article  CAS  PubMed  Google Scholar 

  41. Comi G, Galardi G, Amadio S, Bianchi E, Secchi A, Martinenghi S, Caldara R, Pozza G, Canal N. Neurophysiological study of the effect of combined kidney and pancreas transplantation on diabetic neuropathy: a 2-year follow-up evaluation. Diabetologia. 1991;34(Suppl 1):S103–7. https://doi.org/10.1007/BF00587632.

    Article  PubMed  Google Scholar 

  42. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia. 1997;40(12):1380–7. https://doi.org/10.1007/s001250050839.

    Article  CAS  PubMed  Google Scholar 

  43. Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindström P, Wahren J. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–41. https://doi.org/10.2337/diabetes.52.2.536.

    Article  CAS  PubMed  Google Scholar 

  44. Vantyghem MC, Quintin D, Caiazzo R, Leroy C, Raverdy V, Cassim F, Glowacki F, Hubert T, Gmyr V, Noel C, Kerr-Conte J, Pattou F. Improvement of electrophysiological neuropathy after islet transplantation for type 1 diabetes: a 5-year prospective study. Diabetes Care. 2014 Jun;37(6):e141–2. https://doi.org/10.2337/dc14-0320.

    Article  PubMed  Google Scholar 

  45. Arnold R, Pussell BA, Pianta TJ, Lin CS, Kiernan MC, Krishnan AV. Association between calcineurin inhibitor treatment and peripheral nerve dysfunction in renal transplant recipients. Am J Transplant. 2013;13(9):2426–32. https://doi.org/10.1111/ajt.12324.

    Article  CAS  PubMed  Google Scholar 

  46. Fensom B, Harris C, Thompson SE, Al Mehthel M, Thompson DM. Islet cell transplantation improves nerve conduction velocity in type 1 diabetes compared with intensive medical therapy over six years. Diabetes Res Clin Pract. 2016;122:101–5. https://doi.org/10.1016/j.diabres.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  47. Yu OH, Suissa S. Identifying causes for excess mortality in patients with diabetes: closer but not there yet. Diabetes Care. 2016;39(11):1851–3. https://doi.org/10.2337/dci16-0026.

    Article  PubMed  Google Scholar 

  48. Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW, Cameron AJ, Dwyer T, Taylor HR, Tonkin AM, Wong TY, McNeil J, Shaw JE. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007;116(2):151–7. https://doi.org/10.1161/CIRCULATIONAHA.106.685628.

    Article  CAS  PubMed  Google Scholar 

  49. Lind M, Svensson AM, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, Dahlqvist S, Clements M, Rosengren A. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82. https://doi.org/10.1056/NEJMoa1408214.

    Article  CAS  PubMed  Google Scholar 

  50. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group. Risk factors for cardiovascular disease in type 1 diabetes. Diabetes. 2016;65(5):1370–9. https://doi.org/10.2337/db15-1517.

    Article  CAS  Google Scholar 

  51. La Rocca E, Fiorina P, di Carlo V, Astorri E, Rossetti C, Lucignani G, Fazio F, Giudici D, Cristallo M, Bianchi G, Pozza G, Secchi A. Cardiovascular outcomes after kidney-pancreas and kidney-alone transplantation. Kidney Int. 2001;60(5):1964–71. https://doi.org/10.1046/j.1523-1755.2001.00008.x.

    Article  PubMed  Google Scholar 

  52. Coppelli A, Giannarelli R, Mariotti R, Rondinini L, Fossati N, Vistoli F, Aragona M, Rizzo G, Boggi U, Mosca F, Del Prato S, Marchetti P. Pancreas transplant alone determines early improvement of cardiovascular risk factors and cardiac function in type 1 diabetic patients. Transplantation. 2003;76(6):974–6. https://doi.org/10.1097/01.TP.0000084202.18999.1D.

    Article  PubMed  Google Scholar 

  53. Lindahl JP, Massey RJ, Hartmann A, Aakhus S, Endresen K, Günther A, Midtvedt K, Holdaas H, Leivestad T, Horneland R, Øyen O, Jenssen T. Cardiac assessment of patients with type 1 diabetes median 10 years after successful simultaneous pancreas and kidney transplantation compared with living donor kidney transplantation. Transplantation. 2017;101(6):1261–7. https://doi.org/10.1097/TP.0000000000001274.

    Article  PubMed  Google Scholar 

  54. Fiorina P, Folli F, Bertuzzi F, Maffi P, Finzi G, Venturini M, Socci C, Davalli A, Orsenigo E, Monti L, Falqui L, Uccella S, La Rosa S, Usellini L, Properzi G, Di Carlo V, Del Maschio A, Capella C, Secchi A. Long-term beneficial effect of islet transplantation on diabetic macro−/microangiopathy in type 1 diabetic kidney-transplanted patients. Diabetes Care. 2003;26(4):1129–36. https://doi.org/10.2337/diacare.26.4.1129.

    Article  PubMed  Google Scholar 

  55. Fiorina P, Gremizzi C, Maffi P, Caldara R, Tavano D, Monti L, Socci C, Folli F, Fazio F, Astorri E, Del Maschio A, Secchi A. Islet transplantation is associated with an improvement of cardiovascular function in type 1 diabetic kidney transplant patients. Diabetes Care. 2005;28(6):1358–65. https://doi.org/10.2337/diacare.28.6.1358.

    Article  PubMed  Google Scholar 

  56. Madrigal JM, Monson RS, Hatipoglu B, Oberholzer J, Kondos GT, Varady KA, Danielson KK. Coronary artery calcium may stabilize following islet cell transplantation in patients with type 1 diabetes. Clin Transpl. 2017;31(10) https://doi.org/10.1111/ctr.13059.

  57. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, Pohost GM, Shaw LJ, Weintraub WS, Winters WL Jr, Forrester JS, Douglas PS, Faxon DP, Fisher JD, Gregoratos G, Hochman JS, Hutter AM Jr, Kaul S, Wolk MJ. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation. 2000;102(1):126–40. https://doi.org/10.1161/01.cir.102.1.126.

    Article  PubMed  Google Scholar 

  58. Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, Garg S, Hamman RF, Rewers M, Coronary Artery Calcification in Type 1 Diabetes Study. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52(11):2833–9. https://doi.org/10.2337/diabetes.52.11.2833.

    Article  CAS  PubMed  Google Scholar 

  59. Jeyam A, Colhoun H, McGurnaghan S, Blackbourn L, McDonald TJ, Palmer CNA, McKnight JA, Strachan MWJ, Patrick AW, Chalmers J, Lindsay RS, Petrie JR, Thekkepat S, Collier A, MacRury S, McKeigue PM, SDRNT1BIO Investigators. Clinical impact of residual C-peptide secretion in type 1 diabetes on glycemia and microvascular complications. Diabetes Care. 2021;44(2):390–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Maffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maffi, P., Catarinella, D., Secchi, A. (2023). Secondary Complications: Pancreas Versus Islet Transplantation. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics