Skip to main content

Experimental Pancreas Transplantation

  • Chapter
  • First Online:
Transplantation of the Pancreas
  • 323 Accesses

Abstract

Animal research has played an important role in our understanding of diabetes mellitus and metabolism, transplant immunology, organ preservation, developmental biology, and surgical technique. Advances in diabetes care have changed pancreas transplantation. Improved blood glucose monitoring, continuous insulin pumps, and improvements in care for chronic kidney disease have modified the indications and timing of pancreas transplantation, yet pancreas transplantation remains the only clinical modality that reliably replaces diabetic insulin insufficiency in the long term. Built upon a solid foundation of basic and clinical research, the field of transplantation has advanced remarkably to the point where success is the norm and often taken for granted. Despite successful transplant outcomes and other medical advancements, experimental pancreas transplantation remains relevant today, able to address important questions in organ preservation and reperfusion injury, transplant immunology, autoimmunity, metabolism, and tissue regeneration. In the previous edition of this book, experimental models of pancreas transplantation were reviewed in two separate sections: small animal and large animal. Here, small and large animal models are combined as a single topic to show how they complement each other and how research in small animals (with a focus on immunology) and large animals (with a focus on surgical techniques and preservation) has advanced the field as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Mering J, Minkowski O. Diabetes mellitus nach Pankreasexstirpation. Arch Exp Path Pharm. 1889;26:371–87.

    Article  Google Scholar 

  2. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.

    Article  CAS  PubMed  Google Scholar 

  3. Sachs DH, Leight G, Cone J, et al. Transplantation in miniature swine: I. fixation of the major histocompatibility comp1ex. Transplantation. 1976;22:559.

    Article  CAS  PubMed  Google Scholar 

  4. Barr D, Perkins JD, Miller AR, Marsh CL, Carpenter HA. Canine pancreaticoduodenal allotransplantation with cystoduodenostomy: an animal model with clinical application. J Investig Surg. 1989;2:145.

    Article  CAS  Google Scholar 

  5. Papachristou DN, Fortner JG. A simple method of pancreatic transplantation in the dog. Am J Surg. 1980;139:344.

    Article  CAS  PubMed  Google Scholar 

  6. Debas HT, Passaro E Jr. Preparation of the orthotopic autotransplanted pancreas for long-term exocrine studies. Am J Surg. 1983;146:339.

    Article  CAS  PubMed  Google Scholar 

  7. MacAulay MA, Fraser RB, Morais A, Macdonald AS. Acinar structure and function in canine pancreatic autografts with duct drainage into the urinary bladder. Transplantation. 1985;39:490.

    Article  CAS  PubMed  Google Scholar 

  8. Munda R, Berlatzky Y, Jonung M, et al. Studies on segmental pancreatic autotransplants in dogs. Arch Surg. 1983;118:1310.

    Article  CAS  PubMed  Google Scholar 

  9. Florack G, Sutherland DE, Cavallini M, Najarian JS. Technical aspects of segmental pancreatic autotransplantation in dogs. Am J Surg. 1983;146:565.

    Article  CAS  PubMed  Google Scholar 

  10. Diliz-Perez HS, Hong HQ, de Santibanes E, et al. Total pancreaticoduodenal homotransplantation in dogs immunosuppressed with cyclosporine and steroids. Am J Surg. 1984;147:677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kyriakides GK, Rabinovitch A, Mintz D, Olson L, Rapaport FT, Miller J. Long-term study of vascularized free-draining intraperitoneal pancreatic segmental allografts in beagle dogs. J Clin Invest. 1981;67:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cook K, Sollinger HW, Warner T, Kamps D, Belzer FO. Pancreaticocystostomy: an alternative method for exocrine drainage of segmental pancreatic allografts. Transplantation. 1983;35:634–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ganger KR, Mettler D, Hoflin F, et al. Experimental pancreaticosplenic composite transplantation in the pig. Operative technique and assessment of graft function. Eur Surg Res. 1987;19:323.

    Article  CAS  PubMed  Google Scholar 

  14. Gruessner RW, Tzardis PJ, Schechner R, et al. En bloc simultaneous pancreas and kidney allotransplantation in the pig. J Surg Res. 1990;49:366.

    Article  CAS  PubMed  Google Scholar 

  15. Gruessner RWG, Nakhleh R, Gruessner A, Tomadze G, et al. Streptozotocin-induced diabetes mellitus in pigs. Horm Metab Res. 1993;25:199–203.

    Article  CAS  Google Scholar 

  16. Pirenne J, D’Silva M, Nakhleh RE, et al. Multiorgan transplantation in the rat: development of a new microsurgical model. Microsurgery. 1991;12(6):378–84.

    Article  CAS  PubMed  Google Scholar 

  17. Knoop M, Steffen R, Neuhaus P. A technique for hepatopancreaticoduodenal cluster transplantation in the rat. Microsurgery. 1991;12(6):385–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nakai I, Oka T, Kaufman DB, et al. En bloc kidney and whole pancreaticoduodenal transplantation with bladder drainage in the rat: microsurgical technique and outcome. Microsurgery. 1993;14(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  19. Purcell LJ, Mottram PL, Mandel TE. The transplantation of segmental pancreas isografts in nonobese diabetic mice. Transplant Proc. 1992;24:2299.

    CAS  PubMed  Google Scholar 

  20. Tori M, Ito T, Matsuda H, et al. Model of mouse pancreaticoduodenal transplantation. Microsurgery. 1999;19(2):61–5.

    Article  CAS  PubMed  Google Scholar 

  21. Verma AK. Experimental pancreas transplantation using a supercharged graft to ensure portal venous drainage with urinary exocrine diversion: a novel surgical approach. Transplant Proc. 1998;30(2):444–5.

    Article  CAS  PubMed  Google Scholar 

  22. Mitsuo M, Nakai I, Oda T, Oka T. Total pancreaticoduodenal transplantation with portal venous drainage in the rat: retroparatopic pancreaticoduodenal transplantation: preliminary report. Nihon Geka Gakkai Zasshi. 1991;92(6):762.

    CAS  PubMed  Google Scholar 

  23. Urushihara T, Sumimoto R, Sumimoto K, et al. A comparison of some simplified lactobionate preservation solutions with standard UW solution and eurocollins solution for pancreas preservation. Transplantation. 1992;53(4):750–4.

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi E, Kamada N, Toyama N, et al. Successful methods of pancreas transplantation in the rat using a cuff technique. Aust N Z J Surg. 1994;64(7):491–3.

    Article  CAS  PubMed  Google Scholar 

  25. Ohtsuka S, Yokoyama I, Hayashi S, et al. Experimental rat pancreas transplant: surgical technique and immunological considerations. Surg Today. 1994;24(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  26. Kissler HJ, Gepp H, Sehwille PO. Metabolic consequences of orthotopic pancreaticoduodenal transplantation with preservation of near normal physiology. Transplantation. 2000;70:747–54.

    Article  CAS  PubMed  Google Scholar 

  27. Liu XY, Xue L, Zheng X, Yan S, Zheng SS. Pancreas transplantation in the mouse. Hepatobiliary Panreat Dis Int. 2010;9(3):254–9.

    Google Scholar 

  28. Oberhuber CB, Hein R, Eiter SR, Hermann M, Kofler M, Schneeberger S, Brandacher G, Maglione M. Mouse model for pancreas Trnasplantation using a modified cuff technique. J Vis Exp. 2017;130:e54998. https://doi.org/10.3791/54998.

    Article  CAS  Google Scholar 

  29. Carrel A, Guthrie CC. Functions of a transplanted kidney. Science. 1905;22:473.

    Article  CAS  PubMed  Google Scholar 

  30. Squifflet JP, Gruessner RWG, Sutherland DER. The history of pancreas transplantation: past, present and future. Acta Chir Belg. 2008;108(3):367–78.

    Article  PubMed  Google Scholar 

  31. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Fe G. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61:827.

    CAS  PubMed  Google Scholar 

  32. Han X, Zhao Y, He B, Zhu X, Li T, Li Y, Zhang P, Chen Y, Li G. Feasibility of laparoscopic combined para-orhtotopic pancreas and orthotopic kidney transplantation: initial research with a pig model. Ann Transplant. 2018 Dec;27(23):879–87.

    Article  Google Scholar 

  33. David AI, Aquino CG, Guidoni LR, Moricz A, David-Neto E, Pacheco AM, Szutan LA. Experimental training model of pancreas transplant. Transplant Proc. 2006;38(6):1941–3.

    Article  CAS  PubMed  Google Scholar 

  34. Spadella CT, Schellini SA, Bacchi CE. Pancreas transplantation versus islet transplantation versus insulin therapy in the prevention of nephropathy in alloxan-induced diabetic rats. Transplant Proc. 1998;30:327–9.

    Article  CAS  PubMed  Google Scholar 

  35. Orloff LA, Orloff MS, Orloff SL, Orloff MI. Lifelong prevention of mesangial enlargement by whole pancreas transplantation in rats with diabetes mellitus. Arch Surg. 1999;134:889–97.

    Article  CAS  PubMed  Google Scholar 

  36. Otsu I, Nozawa M, Tsuchida H, Hirose K. The point of no return in rat diabetic nephropathy: effects of pancreatic transplantation. Transplant Proc. 1992;24:857–8.

    CAS  PubMed  Google Scholar 

  37. Pieper GM, Meier DA, Hager SR. Endothelial dysfunction in a model of hyperglycemia and hyperinsulinemia. Am J Phys. 1995;269:H845–50.

    CAS  Google Scholar 

  38. Bueala R, Traeey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest. 1991;87:432–8.

    Article  Google Scholar 

  39. Pieper GM, Adams MB, Roza AM. Pancreatic transplantation reverses endothelial dysfunction in experimental diabetes mellitus. Surgery. 1998;123:89–95.

    Article  CAS  PubMed  Google Scholar 

  40. Pieper GM, Jordan M, Adams MB, Roza AM. Syngeneic pancreatic islet transplantation reverses endothelial dysfunction in experimental diabetes. Diabetes. 1995;44:1106–13.

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi T, Nozawa M, Sohmiya K, et al. Efficacy of pancreatic transplantation on cardiovascular alterations in diabetic rats: an ultrastructural and immunohistochemical study. Transplant Proc. 1998;30:335–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ishida H, Seino Y, Takeshita N, et al. Effect of pancreas transplantation on decreased levels of circulating bone gamma-carboxyglutamic acid-containing protein and osteopenia in rats with streptozocin-induced diabetes. Acta Endocrinol. 1992;127:81–5.

    CAS  Google Scholar 

  43. Cesnjevar R, Schwille PO, Kissler H, et al. Impairment of bone and mineral metabolism after pancreatic transplantation: observations in syngeneic rats. Eur J Surg. 1997;163:851–9.

    CAS  PubMed  Google Scholar 

  44. Spadella CT, Trindade AAT, Lucchesi AN, Sperandeo de Macedo C. Pancreas transplantation delays the Progress of morphological, morphometric and ultrastructural changes in testes of alloxan-induced diabetic rats. Exp Clin Endocrinol Diabetes. 2017 Feb;125(2):106–15.

    Article  Google Scholar 

  45. Group TDCaCTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  46. Kissler HJ, Gepp H, Sehmiedl A, Sehwille PO. Preservation of the ineretin effeet after orthotopie panereas transplantation in inbred rats. Metab Clin Exp. 1999;48:645–50.

    Article  CAS  PubMed  Google Scholar 

  47. Abe H, Bandai A, Makuuchi M, et al. Hyperinsulinaemia accelerates accumulation of cholesterol ester in aorta of rats with transplanted pancreas. Diabetologia. 1996;39:1276–83.

    Article  CAS  PubMed  Google Scholar 

  48. Elian N, Carnot F, Bailbe D, et al. Total pancreatico-duodenal transplantation with portal venous drainage: metabolic assessments in diabetic rats. Eur Surg Res. 2000;32:120–4.

    Article  CAS  PubMed  Google Scholar 

  49. Abe H, Yamada N, Ishibashi S, Makuuehi M. Chronic inhibitory effect of insulin on plasma lipid concentrations in rats with transplanted pancreas. Transplantation. 2000;69:2038–42.

    Article  CAS  PubMed  Google Scholar 

  50. Nakai I, Uehiyama K, Mitsuo M, et al. Elimination of hyperinsulinemia after pancreas transplantation in rats. Transplant Proc. 1999;31:2010–1.

    Article  CAS  PubMed  Google Scholar 

  51. Uehiyama K, Nakai I, Mitsuo M, et al. Surgical and chemical approaches to regulate hyperinsulinemia after pancreas transplantation in rats. Transplant Proc. 1998;30:631–2.

    Article  Google Scholar 

  52. Uehiyama K, Nakai I, Shimizu Y, et al. Effect of troglitazone on blood insulin levels after panereas transplantation with systemic venous drainage in rats. Transplantation. 1997;64:1476–8.

    Article  Google Scholar 

  53. Kissler HJ, Gepp H, Tannapfel A, Sehwille PO. Effect of venous drainage site on insulin action after pancreas transplantation in the rat—is there insulin resistance and a risk for atherosc1erosis? Metab Clin Exp. 2000;49:458–66.

    Article  CAS  PubMed  Google Scholar 

  54. Mitsuo M, Nakai I, Oda T, et al. Importance of venous drainage site of pancreas graft on carbohydrate and lipid metabolisms in streptozoein-induced diabetic rats. Transplant Proc. 1994;26:485–6.

    CAS  PubMed  Google Scholar 

  55. Hawthome WJ, Griffin AD, Lau H, Ekberg H, Allen RD. The effect of venous drainage on glucose homeostasis after experimental pancreas transplantation. Transplantation. 1996;62:435.

    Article  Google Scholar 

  56. Shokouh-Amiri MH, Rahimi-Saber S, Andersen HO, Jensen SL. Pancreas autotransplantation in pig with systemic or portal venous drainage. Effect on the endocrine pancreatic function after transplantation. Transplantation. 1996;61:1004.

    Article  CAS  PubMed  Google Scholar 

  57. Philosophe B, Farney AC, Sehweitzer EJ, et al. The superiority of portal venous drainage over systemic venous drainage in pancreas transplantation. Ann Surg. 2001;234:689–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cattral MS, Bigam DL, Hemming AW, et al. Portal venous and enteric drainage versus systemic and bladder exocrine drainage of pancreas grafts: clinical outcome of 40 consecutive transplant recipients. Ann Surg. 2000;232:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ericzon B-J, Wijnen RMH, Tiebosch A, Kubota K, Kootstra G, Groth CG. The effect of FK506 treatment on pancreaticoduodenal transplantation in the primate. Transplantation. 1992;53:1184.

    Article  CAS  PubMed  Google Scholar 

  60. Ericzon B-J, Wijnen RMH, Kubota K, Kootstra G, Groth CG. FK506-induced impairment of glucose metabolism in the primate—studies in pancreatic transplant recipients and in nontransplanted animals. Transplantation. 1992;54:615.

    Article  CAS  PubMed  Google Scholar 

  61. Gooszen HG, van Schilfgaarde R, Frolich M, Van der Burg MP. The effects of duct obliteration and of autotransplantation on the endocrine function of canine pancreatic segments. Diabetes. 1985;34:1008.

    Article  CAS  PubMed  Google Scholar 

  62. Schang T, Heil J, Dunning M, Najarian JS, Sutherland DE. Contribution of graft duodenum to metabolic disorders in canine recipients of whole pancreaticoduodenal transplants with bladder drainage. Transplant Proc. 1989;21(1, pt 3):2804.

    CAS  PubMed  Google Scholar 

  63. Spadella CT, Mercadante MC, Schellini SA, et al. Effect of pancreas transplantation on the prevention of nephropathy in alloxan-induced diabetic rats. Braz J Med Biol Res. 1996;29:1019–24.

    CAS  PubMed  Google Scholar 

  64. Kissler HJ, Hofmann G, Gepp H, et al. High insulin and low IGF-I plasma levels following pancreas transplantation in rats. Implications for bone and mineral metabolism. Scand J Clin Lab Invest. 2000;60:175–87.

    Article  CAS  PubMed  Google Scholar 

  65. Bartlett ST, Gillison SL, Dirden B, Curry DL. Long-term pancreatic and pancreaticoduodenal isografts maintain normal insulin secretory function in Lewis rats. Transplant Proc. 1992;24(884–885):81.

    Google Scholar 

  66. Spadella CT, Breim LC, Mereadante MC, et al. Metabolic effect of pancreaticoduodenal transplantation in diabetic rats. Microsurgery. 1992;13:132–7.

    Article  CAS  PubMed  Google Scholar 

  67. Kissler HJ, Gepp H, Sehwille PO. Orthotopic pancreas transplantation with portal venous drainage in rats. Surgical technique and metabolic effects(*). Res Exp Med. 1999;199:73–85.

    Article  CAS  Google Scholar 

  68. Nakai I, Deshmukh AR, Liener IE, Sutherland DE. Effect of soybean flour on exocrine function in rat pancreas transplant with bladder drainage. Pancreas. 1992;7:334–8.

    Article  CAS  PubMed  Google Scholar 

  69. Merkel FK, Kelly WD, Goetz FC, et al. Heterotopic dog pancreatic allografts. Surg Forum. 1967;18:381–3.

    Google Scholar 

  70. Du Toit DF, Reece-Smith H, McShane P, Denton T, Morris PJ. A successful technique of segmental pancreatic autotransplantation in the dog. Transplantation. 1981;31:395.

    Article  PubMed  Google Scholar 

  71. Calne RY, McMaster P, Rolles K, Duffy TI. Technical observations in segmental pancreas allografting: observations on pancreatic blood flow. Transplant Proc. 1980;12(4, suppl 2):51.

    CAS  PubMed  Google Scholar 

  72. Suzuki Y, Kuroda Y, Tanioka Y, et al. New technique of orthotopie segmental pancreas transplantation with portal venous drainage established by interposing the sp1enic vessels. Transplant Proc. 1996;28:1804.

    CAS  PubMed  Google Scholar 

  73. Suzuki Y, Kuroda Y, Tanioka Y, et al. Beneficial effect of splenic vessel interposition on thrombosis prevention in canine orthotopic segmental pancreas transplantation. Transplant Proc. 1998;30:145.

    Article  CAS  PubMed  Google Scholar 

  74. Chao SH, Chieng PU, Lee PH, Chu SH, Chen KM. Octreotide effects on pancreatic graft pancreatitis in inbred pigs. Transplant Proc. 1996;28:1799.

    CAS  PubMed  Google Scholar 

  75. Chalsti M, Iordanou C, Kratiras, et. Al. Experimental isolation and preservation of solid organs before transplantation: effects of pretreatment using four different molecules. J Int Med Res. 2020;48(6):03000060520933452.

    Google Scholar 

  76. Kallen R, Jonsson P, Montgomery A, Borgstrom A. Failure of aprotinin to prevent graft pancreatitis in porcine pancreas transplantation. Pancreas. 1996;12:103.

    Article  CAS  PubMed  Google Scholar 

  77. Nakai I, Kaufman DB, Field MJ, et al. Differential effects of preexisting uremia and a synchronous kidney graft on pancreas allograft functional survival in rats. Transplantation. 1992;54:17–25.

    Article  CAS  PubMed  Google Scholar 

  78. Konigsrainer A, Dietze O, Habringer C, et al. Morphology of acute rejection and corresponding cytological findings in exocrine secretion after pancreas transplantation in the rat. Transplantation. 1991;52:770–7.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng T, Lu Z, Merideth N, et al. Early markers of pancreas transplant rejection. Am Surg. 1992;58:630–3.

    CAS  PubMed  Google Scholar 

  80. Tanaka S, Kamiike W, Ito T, et al. Generation of nitric oxide as a rejection marker in rat pancreas transplantation. Transplantation. 1995;60:713–7.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson BF, Thomas G, Wiley KN, et al. Thromboxane and prostacyclin synthesis in experimental pancreas transplantation. Changes in parenchymal and vascular prostanoids. Transplantation. 1993;56:1447–53.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson BF, Wiley KN, Greaves M, et al. Urinary thromboxane and 6-keto-prostaglandin Fl alpha are early markers of acute rejection in experimental pancreas transplantation. Transplantation. 1994;58:18–23.

    Article  CAS  PubMed  Google Scholar 

  83. Dietze O, Konigsrainer A, Habringer C, et al. Histologic classification of pancreatic allograft rejection in the rat. Transplant Proc. 1992;24:932–3.

    CAS  PubMed  Google Scholar 

  84. Dietze O, Konigsrainer A, Habringer C, et al. Histological features of acute pancreatic allograft rejection after pancreaticoduodenal transplantation in the rat. Transplant Int. 1991;4:221–6.

    Article  CAS  Google Scholar 

  85. Knoop M, McMahon RF, Jones CJ, Hutchinson IV. Apoptosis in pancreatic allograft rejection—ultrastructural observations. Exp Pathol. 1991;41:219–24.

    Article  CAS  PubMed  Google Scholar 

  86. Papadimitriou JC, Drachenberg CB, Wiland A, et al. Histologic grading of acute allograft rejection in pancreas needle biopsy: correlation to serum enzymes, glycemia, and response to immunosuppressive treatment. Transplantation. 1998;66:1741–5.

    Article  CAS  PubMed  Google Scholar 

  87. Purcell LJ, Mottram PL, Green MK, Mandel TE. Transplantation of the segmental pancreas in STZ-treated diabetic mice. Transplant Proc. 1992;24(1):236–7.

    CAS  PubMed  Google Scholar 

  88. Josephson MA, Schmeisser S, Sohn D, et al. Rat to mouse pancreas xenografts: comparison to islet xenografts. Transplant Proc. 1992;24(2):653–4.

    CAS  PubMed  Google Scholar 

  89. Schulak JA, Krishnamurthi V, Masih R, Robinson A. Effect of major histocompatibility disparity on mycophenolate mofetil immunosuppression in rat pancreas transplantation. Transplant Proc. 1995;27:3010–1.

    CAS  PubMed  Google Scholar 

  90. Schulak JA, Masih R, Krishnamurthi V, Robinson A. Mycophenolate mofetil immunosuppression in rat pancreas allotransplantation. J Surg Res. 1996;60:79–83.

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki K, Kazui T, Kawabe A, et al. Immunosuppressive effect of FTY 720 on rat pancreas allograft. Transplant Proc. 1998;30:3417–8.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki K, Kazui T, Kawabe A, et al. Beneficial immunosuppressive effect of FTY720 combined with intrathymic injection of splenic cells on rat pancreaticoduodenal allograft. Transplant Proc. 1998;30:1067–8.

    Article  CAS  PubMed  Google Scholar 

  93. ChenH WJ, Xu D, et al. Reversal of ongoing heart, kidney, and pancreas allograft rejection and suppression of accelerated heart allograft rejection in the rat by rapamycin. Transplantation. 1993;56:661–6.

    Article  Google Scholar 

  94. Chen H, Wu J, Xu D, et al. Rapamycin reverses acute heart, kidney, and pancreas allograft rejection and prevents accelerated heart allograft rejection in the rat. Transplant Proc. 1993;25(1, pt 1):719–20.

    CAS  PubMed  Google Scholar 

  95. Chen HF, Wu JP, Luo HY, Daloze PM. Reversal of ongoing rejection of allografts by rapamycin. Transplant Proc. 1991;23:2241–2.

    PubMed  Google Scholar 

  96. Chen HF, Wu JP, Luo HY, Daloze PM. The immunosuppressive effect of rapamycin on pancreaticoduodenal transplants in the rat. Transplant Proc. 1991;23:2239–40.

    CAS  PubMed  Google Scholar 

  97. Stepkowski SM, Chen H, Daloze P, Kahan BD. Prolongation by rapamycin of heart, kidney, pancreas, and small bowel allograft survival in rats. Transplant Proc. 1991;23(1, pt 1):507–8.

    CAS  PubMed  Google Scholar 

  98. Qi S, Chen H, Xu D, Daloze P. Prolongation of pancreas allograft survival by mycophenolate mofetil in the rat. Transplant Proc. 1996;28:932–3.

    CAS  PubMed  Google Scholar 

  99. Nakai I, Shimizu Y, Morita S, et al. Rat whole pancreaticoduodenal allotransplantation treated with 15-deoxyspergualin alone and with splenectomy. Transplant Proc. 1995;27:3000–1.

    CAS  PubMed  Google Scholar 

  100. Jindal RM, Soltys K, Yost F, et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. Transplantation. 1993;56:1275–8.

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Qi S, Xu D, et al. Immunosuppressive effects of the cyclosporin derivative SDZ IMM 125 on kidney allograft in the dog and small bowel and pancreas allografts in the rat. Clin Immunol lmmunopathol. 1996;80:76–81.

    Article  CAS  Google Scholar 

  102. Johnson BF, Henry L, Fox M, Raftery AT. Morphology of rejection in experimental pancreas transplantation and its modification by cyclosporin a administration. Int J Exp Pathol. 1992;73:751–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohtsuka S, Hayashi S, Sato E, et al. The effect of short-term FK 506 therapy on pancreas transplantation using the cuff technique in rats. Transplant Proc. 1992;24:912–4.

    CAS  PubMed  Google Scholar 

  104. Yamashita T, Maeda Y, Ishikawa T, et al. Prolongation of pancreaticoduodenal allograft survival in rats by treatment with FK 506. Transplant Proc. 1991;23:3219–20.

    CAS  PubMed  Google Scholar 

  105. du Toit DF, Muller C, Mouton Y, et al. Tacrolimus (FKS06) monotherapy provides potent and significant suppression of allogeneic foetal rat pancreatic allograft rejection. Transplant Proc. 1998;30:4073–4.

    Article  PubMed  Google Scholar 

  106. Guymer RH, Mandel TE. Urocanic acid as an immunosuppressant in allotransplantation in mice. Transplantation. 1993;55:36–43.

    Article  CAS  PubMed  Google Scholar 

  107. Grochowicz PM, Bowen KM, Hibberd AD, et al. Castanospermine, an inhibitor of glycoprotein processing, prolongs pancreaticoduodenal allograft survival. Transplant Proc. 1992;24:2295–6.

    CAS  PubMed  Google Scholar 

  108. Chen H, Wu J, Luo H, Daloze P. Synergistic effect of rapamycin and cyclosporine in pancreaticoduodenal transplantation in the rat. Transplant Proc. 1992;24:892–3.

    CAS  PubMed  Google Scholar 

  109. Vu MD, Qi S, Xu D, et al. Synergistic effects of mycophenolate mofetil and sirolimus in prevention of acute heart, pancreas, and kidney allograft rejection and in reversal of ongoing heart allograft rejection in the rat. Transplantation. 1998;66:1575–80.

    Article  CAS  PubMed  Google Scholar 

  110. du Toit DF, Muller C, Page B, et al. Immunosuppression with cyclosporin a in combination with mycophenolate mofetil suppresses rejection of allogeneic fetal rat pancreatic allografts. Transplant Proc. 1998;30(8):4092–3.

    Article  PubMed  Google Scholar 

  111. Konigsrainer A, Mark W, Hechenleitner P, et al. At what stage does pancreas allograft rejection become irreversible?: an experimental study. Transplantation. 1997;63(5):631–5.

    Article  CAS  PubMed  Google Scholar 

  112. Muller CJ, Du Toit DF, Beyers AD, et al. Prolongation of rat fetal pancreas allograft survival using a nondepleting anti-CD4 monoclonal antibody W3/25. Transplant Proc. 1998;30:4180–3.

    Article  CAS  PubMed  Google Scholar 

  113. Kawabe A, Suzuki H, Kimura T, et al. Immunosuppressive effects of monoclonal antibodies against adhesion molecules in rat pancreas allografts. Transplant Proc. 1994;26:1937–8.

    CAS  PubMed  Google Scholar 

  114. Kawabe A, Kimura T, Suzuki H, et al. Anti-adhesion (anti ICAM- l and anti-LFA-l) therapy in a rat pancreas transplantation model. Transplant Proc. 1996;28(3):1808–11.

    CAS  PubMed  Google Scholar 

  115. Guymer RH, Mandel TE. Immunosuppression using a monoclonal antibody to ICAM-l in murine allotransplantation. Transplant Proc. 1992;24:218–9.

    CAS  PubMed  Google Scholar 

  116. Bulava KM, Kulik VP. Use of 2,4-dinitrophenol for immunosuppressive action on the recipient in implantation of fetal organs in mice. Biull Eksp Biol Med. 1992;113:355–8.

    Article  CAS  PubMed  Google Scholar 

  117. Hayashi H, Toki J, Zhexiong L, et al. Long-term (>1 year) analyses of chimerism and tolerance in mixed allogeneic chimeric mice using normal mouse combinations. Stem Cells. 2000;18:273–80.

    Article  CAS  PubMed  Google Scholar 

  118. Suzuki K, Kazui T, Kawabe A, et al. Origin, occurrence, and function of mierochimeric cells: V. quantitative aspects of microchimerism following pancreaticoduodenal transplantation model in rats. Transplant Proc. 1998;30:3849.

    Article  CAS  PubMed  Google Scholar 

  119. Bektas H, Jorns A, Klempnauer J. Differential effect of donor specific blood transfusions after kidney, heart, pancreas, and skin transplantation in major histocompatibility complex-incompatible rats. Transfusion. 1997;37:226–30.

    Article  CAS  PubMed  Google Scholar 

  120. Leibel BS, Martin IM, Chamberlain JW, Zingg W. Pretreatment with increasing doses of donor pancreas or whole blood induces tolerance to allogeneic pancreatic transplantation. Transplant Proc. 1994;26:3709–14.

    CAS  PubMed  Google Scholar 

  121. Schulak JA, Mulligan DC, Robinson A. Intrathymic spleen cell inoculation and ALS fails to induce tolerance to rat pancreas allografts. Transplant Proc. 1997;29(1/2):1070–1.

    Article  CAS  PubMed  Google Scholar 

  122. Zhan Y, Martin RM, Sutherland RM, et al. Local production of anti-CD4 antibody by transgenic allogeneic grafts affords partial protection. Transplantation. 2000;70(6):947–54.

    Article  CAS  PubMed  Google Scholar 

  123. Mueller R, Davies JD, Krahl T, Sarvetniek N. IL-4 expression by grafts from transgenic mice fails to prevent allograft rejection. J Immunol. 1997;159:1599–603.

    Article  CAS  PubMed  Google Scholar 

  124. Davies JD, Mueller R, Minson S, et al. Interleukin-4 secretion by the allograft fails to affect the allograft-specific interleukin- 4 response in vitro. Transplantation. 1999;67(12):1583–9.

    Article  CAS  PubMed  Google Scholar 

  125. Lee MS, Sawyer S, Amush M, et al. Transforming growth factor- beta fails to inhibit allograft rejection or virus-induced autoimmune diabetes in transgenic mice. Transplantation. 1996;61:1112–5.

    Article  CAS  PubMed  Google Scholar 

  126. Liu C, Deng S, Yang Z, et al. Local production of CTLA4-Ig by adenoviral-mediated gene transfer to the pancreas induces permanent allograft survival and donor-specific tolerance. Transplant Proc. 1999;31(1–2):625–6.

    Article  CAS  PubMed  Google Scholar 

  127. Davies JD, O’Connor E, Hall D, et al. CD4+ CD45RB low density cells from untreated mice prevent acute allograft rejection. J Immunol. 1999;163:5353–7.

    Article  CAS  PubMed  Google Scholar 

  128. Nakai I, Oka T, Field JM, et al. Neonatal tolerance induction in diabetes-prone BB rats as a model for donor-specific pancreas transplantation during adulthood. Transplant Proc. 1992;24:2902.

    CAS  PubMed  Google Scholar 

  129. Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes: characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med. 1993;177:627.

    Article  CAS  PubMed  Google Scholar 

  130. Seddon B, Mason D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+ CD45RC- cells and CD4+CD8- thymocytes. J Exp Med. 1999;189:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Guymer RH, Mandel TE. A comparison of corneal, pancreas, and skin grafts in mice. A study of the determinants of tissue immunogenicity. Transplantation. 1994;57:1251–62.

    Article  CAS  PubMed  Google Scholar 

  132. Yamamoto S, Ito T, Nakata S, et al. The rejection mechanism of rat pancreaticoduodenal allografts with a dass I MHC disparity. Transplantation. 1994;57:1217–22.

    Article  CAS  PubMed  Google Scholar 

  133. Maeda A, Ito T, Ohkawa A, et al. Difference in immunologic responses between pancreatic and islet transplantation in “Iow responder” rat combinations with class I MHC disparity. Transplant Proc. 1998;30:550–1.

    Article  CAS  PubMed  Google Scholar 

  134. Oberhuber G, Schmid T, Thaler W, et al. The pattern of rejection after combined stomach, small bowel, and pancreas transplantation in the rat. Transplant Int. 1993;6:296–8.

    Article  CAS  Google Scholar 

  135. Vogt P, Hiller WF, Steiniger B, Klempnauer J. Differential response of kidney and pancreas rejection to cydosporine immunosuppression. Transplantation. 1992;53:1269–72.

    Article  CAS  PubMed  Google Scholar 

  136. Kovarik J, Koulmanda M, Mandel TE. Expression of both Thl and Th2 cytokines correlates with the histological rejection of MHC-matched and MHC-mismatched foetal pancreas allografts in mice. Immunol Cell Biol. 1997;75:303–9.

    Article  CAS  PubMed  Google Scholar 

  137. Klempnauer J, Bektas H, Riller WF, Steiniger B. Spontaneous tolerance induced by MHC class I incompatible kidney grafts for subsequent pancreas transplants. Transplant Proc. 1993;25:2856.

    CAS  PubMed  Google Scholar 

  138. Klempnauer J, Jorns A, Frericks BB, Bektas H. Changes of antigenicity and loss of immunogenicity in long-standing class I MHC disparate pancreas allografts. Transplant Proc. 1997;29(1/2):1151.

    Article  CAS  PubMed  Google Scholar 

  139. Qiao H, Zhu Y, Jiang H. The mutual benefit role of pancreas and liver in combined transplantation. Zhonghua Wai Ke Za Zhi. 1997;35:749–52.

    CAS  PubMed  Google Scholar 

  140. Li L, Sun J, Wang C, et al. Graft histology and Iymphocyte apoptosis in pancreas allografts combined with liver allografts. Transplant Proc. 1998;30:2956–7.

    Article  CAS  PubMed  Google Scholar 

  141. Wang C, Sun J, Li L, et al. Conversion of pancreas allograft rejection to acceptance by liver transplantation. Transplantation. 1998;65:188–92.

    Article  CAS  PubMed  Google Scholar 

  142. Wang C, Sun J, Wang L, et al. Combined liver and pancreas transplantation induces pancreas allograft tolerance. Transplant Proc. 1997;29(112):1145–6.

    Article  CAS  PubMed  Google Scholar 

  143. Drachenberg CB, Papadimitriou JC, Klassen DK, et al. Evaluation of pancreas transplant needle biopsy: reproducibility and revision of histologic grading system. Transplantation. 1997;63:1579.

    Article  CAS  PubMed  Google Scholar 

  144. Gotoh M, Monden M, Motoki Y, et al. Early detection of rejection in the allografted pancreas. Transplant Proc. 1984;16:781.

    Google Scholar 

  145. Prieto M, Sutherland DE, Femandez-Cruz L, Heil J, Najarian JS. Urinary amylase monitoring for early diagnosis of pancreas allograft rejection in dogs. J Surg Res. 1986;40:597.

    Article  CAS  PubMed  Google Scholar 

  146. Prieto M, Sutherland DER, Fernandez-Cruz L, et al. Early diagnosis and treatment of rejection in pancreas transplantation. Transplant Proc. 1986;18:1805.

    Google Scholar 

  147. Prieto M, Sutherland DE, Femandez-Cruz L, Heil J, Najarian JS. Experimental and clinical experience with urine amylase monitoring for early diagnosis of rejection in pancreas transplantation. Transplantation. 1987;43:73.

    Article  CAS  PubMed  Google Scholar 

  148. Prieto M, Sutherland DE, Goetz FC, Rosenberg ME, Najarian JS. Pancreas transplant results according to the technique of duct management: bladder versus enteric drainage. Surgery. 1987;102:680.

    CAS  PubMed  Google Scholar 

  149. Gruessner RWG, Nakhleh R, Tzardis P, Schechner R, Platt J, Gruessner AC, et al. Differences in rejection grading after simultaneous pancreas and kidney transplantation in pigs. Transplantation. 1994;57:1021–8.

    Article  CAS  PubMed  Google Scholar 

  150. Gruessner RWG, Nakhleh R, Tzardis P, Schechner R, Gruessner AC, et al. Rejection patterns after simultaneous pancreaticoduodenal-kidney transplants in pigs. Transplantation. 1994;57:756–60.

    Article  CAS  PubMed  Google Scholar 

  151. Gruessner RW, Nakhleh R, Tzardis PJ, et al. Correlation between duodenal and kidney rejection: a histologic comparative study in a pig model of pancreaticoduodenal-kidney transplantation. Transplant Proc. 1994;26:541.

    CAS  PubMed  Google Scholar 

  152. Gruessner RW, Nakhleh R, Tzardis P, et al. Rejection in single versus combined pancreas and kidney transplantation in pigs. Transplantation. 1993;56:1053.

    Article  CAS  PubMed  Google Scholar 

  153. Suzuki Y, Kuroda Y, Tanioka Y, et al. Peripancreatic fluid cytology: detection of early rejection versus graft pancreatitis after canine pancreatic transplantation. World J Surg. 1997;21:880.

    Article  CAS  PubMed  Google Scholar 

  154. Wahlberg JA, Love R, Landegaard L, Southard JH, Belzer FO. N-hour preservation of the canine pancreas. Transplantation. 1987;43:5.

    Article  CAS  PubMed  Google Scholar 

  155. Kuroda Y, Tanioka Y, Morita A, et al. Protective effect of preservation of canine pancreas by the two-layer (University of Wisconsin solution/perfluorochemical) method against rewarming ischemic injury during implantation. Transplantation. 1994;57:658.

    Article  CAS  PubMed  Google Scholar 

  156. Kim Y, Kuroda Y, Tanioka Y, et al. Recovery of pancreatic tissue perfusion and a TP tissue level after reperfusion in canine pancreas grafts preserved by the two-layer method. Pancreas. 1997;14:285.

    Article  CAS  PubMed  Google Scholar 

  157. Habran M, De Beule J, Jochmans I. IGL-1 preservation solution in kidney and pancreas transplantation: a systematic review. PLoS One. 2020;15(4):e0231019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Esmaeilzadeh M, Fonouni H, Golriz M, et al. Evaluation of the modified HTK solution in pancreas transplantation – an expermimental model. Asian J Surg. 2016;39:66–73.

    Article  PubMed  Google Scholar 

  159. Kumar R, Chung WY, Runau F, Isherwood JD, et al. Ex vivo normothermic porcine pancreas: a physiological model for preservation and transplant study. Int J Surg. 2018;54(Pt A):206–15.

    Article  PubMed  Google Scholar 

  160. Hamaoui K, Papalois V. Machine perfusion and the pancreas: will it increase the donor pool? Curr Diab Rep. 2019;19:56. https://doi.org/10.1007/s11892-019-1165-y.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Vollmar B, Janata J, Yamauehi J, et al. Exocrine, but not endocrine, tissue is susceptible to microvascular ischemia-reperfusion injury following pancreas transplantation in the rat. Transplant Int. 1999;12:50–5.

    CAS  Google Scholar 

  162. Mayer H, Sehmidt J, Thies J, et al. Characterization and reduction of ischemia-reperfusion injury after experimental pancreas transplantation. J Gastrointest Surg. 1999;3:162–6.

    Article  CAS  PubMed  Google Scholar 

  163. Hotter G, Closa D, Pi F, et al. Nitric oxide and arachidonate metabolism in ischemia-reperfusion associated with pancreas transplantation. Transplantation. 1995;59:417–21.

    Article  CAS  PubMed  Google Scholar 

  164. Hotter G, Pi F, Sanz C, et al. Endothelin mediated nitric oxide effects in ischemia―reperfusion associated with pancreas transplantation. Digest Dis Sci. 1998;43:2627–33.

    Article  CAS  PubMed  Google Scholar 

  165. Pi F, Hotter G, Closa D, et al. Differential effect of nitric oxide inhibition as a function of preservation period in pancreas transplantation. Digest Dis Sci. 1997;42:962–71.

    Article  CAS  PubMed  Google Scholar 

  166. Svensson AM, Sandler S, Jansson L. The blood flow in pancreatico-duodenal grafts in rats: inhibition of nitric oxide synthase preferentially decreases islet blood flow. Eur J Pharmacol. 1995;275:99–103.

    Article  CAS  PubMed  Google Scholar 

  167. Ikeda M, Matsura T, Sumimoto K, et al. Alpha-tocopherol pretreatment protects the endocrine function of grafts against ischemic damage during heterotopic pancreatic transplantation. Life Sci. 1996;59:781–8.

    Article  PubMed  Google Scholar 

  168. Urushihara T, Sumimoto K, Sumimoto R, et al. Nafamostat mesilate rinse solution improves graft survival after rat pancreas and heart preservation. Transplant Proc. 1995;27(1):786–7.

    CAS  PubMed  Google Scholar 

  169. Sumimoto R, Dohi K, Urushihara T, et al. An examination of the effects of solutions containing histidine and lactobionate for heart, pancreas, and liver preservation in the rat. Transplantation. 1992;53(6):1206–10.

    Article  CAS  PubMed  Google Scholar 

  170. Urushihara T, Sumimoto K, Ikeda M, et al. A comparative study of two-layer cold storage with perfluorochemical alone and University of Wisconsin solution for rat pancreas preservation. Transplantation. 1994;57(11):1684–6.

    CAS  PubMed  Google Scholar 

  171. Vollmar B, Janata J, Yamauehi JI, Menger MD. Attenuation of microvascular reperfusion injury in rat pancreas transplantation by L-arginine. Transplantation. 1999;67:950–5.

    Article  CAS  PubMed  Google Scholar 

  172. Peralta C, Hotter G, Closa D, et al. Nitric oxide enhances endothelin production in pancreas transplantation. Pancreas. 1997;14:369–72.

    Article  CAS  PubMed  Google Scholar 

  173. Hotter G, Closa D, Pi F, et al. Nitric oxide enhanees 12-HETE versus L TB4 generation in panereatie transplantation. Inflammation. 1996;20:23–31.

    Article  CAS  PubMed  Google Scholar 

  174. Hotter G, Closa D, Pi F, et al. Arachidonate metabolism in ischemia- reperfusion associated with pancreas transplantation. J Lipid Mediat Cell Signal. 1994;9:135–43.

    CAS  PubMed  Google Scholar 

  175. Hotter G, Leon OS, Rosello-Catafau J, et al. Tissular prostanoid release, phospholipase A2 activity, and lipid peroxidation in pancreas transplantation. Transplantation. 1991;51:987–90.

    Article  CAS  PubMed  Google Scholar 

  176. Oda T, Nakai I, Mituo M, et al. Role of oxygen radicals and synergistic effect of superoxide dismutase and catalase on ischemia- reperfusion injury of the rat pancreas. Transplant Proc. 1992;24:797–8.

    CAS  PubMed  Google Scholar 

  177. Ikeda M, Sumimoto K, Urushihara T, et al. Prevention of ischemic damage in rat pancreatic transplantation by pretreatment with alpha-tocopherol. Transplant Proc. 1994;26:561–2.

    CAS  PubMed  Google Scholar 

  178. Wang FS, Yamaguchi Y, Akizuki E, et al. Neutrophil elastase inhibitor (ONO-5046) decreases cytokine-induced neutrophil chemoattractant after reperfusion of pancreaticoduodenal transplantation in rats. Transplantation. 1996;61:1103–7.

    Article  CAS  PubMed  Google Scholar 

  179. Bassi C, Benetti L, Girelli R, et al. Early graft injuries after pancreatic transplantation in syngeneic rats. Cytoprotective effects of gabexate-mesilate. Int J Pancreatol. 1991;8:345–53.

    Article  CAS  PubMed  Google Scholar 

  180. Urushihara T, Sumimoto K, Sumimoto R, et al. Prevention of reperfusion injury after rat pancreas preservation using rinse solution containing nafamostat mesilate. Transplant Proc. 1996;28(3):1874–5.

    CAS  PubMed  Google Scholar 

  181. Urushihara T, Sumimoto K, Sumimoto R, et al. Rinse solution containing a protease inhibitor and Na-lactobionate increases graft survival after rat pancreas preservation. Transplant Proc. 1994;26(2):559–60.

    CAS  PubMed  Google Scholar 

  182. Urushihara T, Sumimoto K, Sumimoto R, et al. A comparison of rat pancreas preservation with CMH, Ep4, UW, and HL solutions. Transplant Proc. 1998;30(7):3425–6.

    Article  CAS  PubMed  Google Scholar 

  183. Urushihara T, Sumimoto K, Ikeda M, et al. A comparison study of rat pancreas preservation using perfluorochemical and fluorocarbon- emulsion as preservation medium. Biomater Artif Cells Immobilization Biotechnol. 1992;20(2/4):933–7.

    Article  CAS  PubMed  Google Scholar 

  184. Bartlett ST, Chin T, Dirden B, et al. Inclusion of peripancreatic lymph node cells prevents recurrent autoimmune destruction of islet transplants: evidence of donor chimerism. Surgery. 1995;118(2):392–7; discussion 397–398.

    Article  CAS  PubMed  Google Scholar 

  185. Purcell LJ, Mottram PL, Mandel TE. Immunosuppressive antibody treatment prolongs graft survival in two murine models of segmental pancreas transplantation. Immunol Cell Biol. 1993;71(4):349–52.

    Article  CAS  PubMed  Google Scholar 

  186. Mottram PL, Murray-Segal LJ, Han W, et al. Long-term survival of segmental pancreas isografts in NOD/Lt mice treated with anti-CD4 and anti-CD8 monoclonal antibodies. Diabetes. 1998;47(9):1399–405. [published erratum appears in Diabetes 1998 Dec;47(12):1978].

    Article  CAS  PubMed  Google Scholar 

  187. Purcell LJ, Mottram PL. Prevention of both rejection and recurrence of autoimmune disease in the NOD/Lt mouse following segmental pancreas transplantation. Transplant Proc. 1995;27(3):2166–7.

    CAS  PubMed  Google Scholar 

  188. Koulmanda M, McKenzie I, Sandrin M, Mandel T. Fetal pig xenografts in NOD/Lt mice: Lack of expression of Gal (alpha 1–3)Gal on endocrine cells and the effect of peritransplant antiCD4 monoclonal antibody and graft immunomodification on graft survival. Transplant Proc. 1995;27(6):3570.

    CAS  PubMed  Google Scholar 

  189. Koumanda M, Mandel TE. Rejection and histopathology of renal subcapsular fetal pig pancreas xenografts in normal and anti-CD4 monoclonal antibody-treated nonobese diabetic mice. Transplant Proc. 1993;25(5):2928–9.

    Google Scholar 

  190. Akita K, Ogawa M, Mandel TE. Effect ofFK506 and anti-CD4 therapy on fetal pig pancreas xenografts and host lymphoid cells in nod/Lt, CBA, and BALB/c mice. Cell Transplant. 1994;3(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  191. Koulmanda M, Mandel TE. Effect of anti-CD4 and anti-ICAM MAb on survival of fetal pig pancreas grafts in NOD mice. Transplant Proc. 1994;26(6):3466.

    CAS  PubMed  Google Scholar 

  192. Mandel TE, Koulmanda M. Effect of anti-CD4 and anti-CD8 monoclonal antibody treatment on fetal pig pancreas xenograft surviva1 in nonobese diabetic/Lt female mice. Transplant Proc. 1992;24(1):216–7.

    PubMed  Google Scholar 

  193. Mandel TE, Koulmanda M. Anti-CD3 monoclonal antibody prolongs survival of fetal pig pancreas grafts in NOD mice. Transplant Proc. 1992;24(5):2289–90.

    CAS  PubMed  Google Scholar 

  194. Bacelj A, Mandel TE, Charlton B. Anti-V beta 8 antibody therapy prevents disease recurrence in fetal pancreas isografts in spontaneously diabetic nonobese diabetic mice. Transplant Proc. 1992;24(1):220–1.

    CAS  PubMed  Google Scholar 

  195. Kai N, Motojima K, Tsunoda T, Kanematsu T. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. Transplantation. 1993;55(4):936–40.

    Article  CAS  PubMed  Google Scholar 

  196. Kai N, Motojima K, Shiogama T, et al. A study on the timing of immunologic priming in autoimmune insulitis in NOD mice. Transplant Proc. 1992;24(3):1040–1.

    CAS  PubMed  Google Scholar 

  197. Uchikoshi F, Ito T, Kamiike W, et al. Anti-ICAM-IILFA-l monoclonal antibody therapy prevents graft rejection and IDDM recurrence in BB rat pancreas transplantation. Transplant Proc. 1995;27(2):1527–8.

    CAS  PubMed  Google Scholar 

  198. Bradley BJ, Haskins K, G. LRF, Lafferty KJ. CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T-cell clone. Diabetes. 1992;41(12):1603–8.

    Article  CAS  PubMed  Google Scholar 

  199. Nagata M, Yoon JW. Studies on autoimmunity for T-cell-mediated beta-cell destruction. Distinct difference in beta-cell destruction between CD4+ and CD8+ T-cell clones derived from lymphocytes infiltrating the islets of NOD mice. Diabetes. 1992;41(8):998–1008.

    Article  CAS  PubMed  Google Scholar 

  200. Wang Y, Pontesilli O, Gill RG, et al. The role of CD4+ and CD8 + T cells in the destruction of islet grafts by spontaneously diabetic mice. Proc Natl Acad Sci U S A. 1991;88(2):527–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Georgiou HM, Mandel TE. Induction of insulitis in athymic (nude) mice. The effect of NOD thymus and pancreas transplantation. Diabetes. 1995;44(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  202. Uchikoshi F, Ito T, Kamiike W, et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. Transplantation. 1996;61(11):1629–36.

    Article  CAS  PubMed  Google Scholar 

  203. Uchikoshi F, Ito T, Kamiike W, et al. Pancreas transplantation, but not islet transplantation, protects recurrence of IDDM in diabetic BB rats. Transplant Proc. 1997;29(1/2):753–5.

    Article  CAS  PubMed  Google Scholar 

  204. Uchikoshi F, Ito T, Kamiike W, et al. Appearance of immunoregulatory RT6+ T cells after successful pancreas transplantation in diabetic BB rats. Transplant Proc. 1995;27(1):599–601.

    CAS  PubMed  Google Scholar 

  205. Tori M, Ito T, Yumiba T, et al. Proliferation of donor-derived NKR-pl +TCR alpha beta + (NKT) cells in the nonrecurrent spontaneous diabetic BB rats transplanted with pancreaticoduodenal grafts of Wistar-furth donors. Transplant Proc. 1999;31(7):2741–2.

    Article  CAS  PubMed  Google Scholar 

  206. Tori M, Ito T, Yumiba T, et al. Significant role of intragraft lymphoid tissues in preventing insulin-dependent diabetes mellitus recurrence in whole pancreaticoduodenal transplantation. Microsurgery. 1999;19(7):338–43.

    Article  CAS  PubMed  Google Scholar 

  207. Tori M, Ito T, Kitagawa-Sakakida S, et al. Importance of donor-derived lymphocytes in the protection of pancreaticoduodenal or islet grafts from recurrent autoimmunity: a role for RT6+ NKR-P1 + T cells. Transplantation. 2000;70(1):32–8.

    CAS  PubMed  Google Scholar 

  208. Uchikoshi F, Yang ZD, Rostami S, et al. Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA41g gene transfer to the pancreatic graft in BB rat. Diabetes. 1999;48(3):652–7.

    Article  CAS  PubMed  Google Scholar 

  209. Fox A, Koulmanda M, Mandel TE, et al. Evidence that macrophages are required for T -cell infiltration and rejection of fetal pig pancreas xenografts in nonobese diabetic mice. Transplantation. 1998;66(11):1407–16.

    Article  CAS  PubMed  Google Scholar 

  210. Cooper DK, Hara H, Iwase H, et al. Pig kidney exenotransplantation: progress toward clinical trials. Clin Transpl. 2020;35:e14139. https://doi.org/10.1111/ctr.14139.

    Article  Google Scholar 

  211. Chong AS, Ma LL, Yin D, et al. Tolerance of T-independent xeno-antibody responses in the hamster-to-rat xenotransplantation model is species-restricted but not tissue-specific. Xenotransplantation. 2000;7(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  212. Sakimoto H, Fukuda Y, Sumimoto K, et al. Prolonged survival of hamster-to-rat pancreas xenografts by FK 506 and splenectomy. Transplant Proc. 1995;27(1):296–7.

    CAS  PubMed  Google Scholar 

  213. Sakimoto H, Fukuda Y, Sumimoto K, et al. Administration of tacrolimus (FK506) in hamster-to-rat pancreas xenotransplantation. Transplant Proc. 1996;28(3):1433–4.

    CAS  PubMed  Google Scholar 

  214. Ohtsuka S, Yasutomi M, Hayashi S, et al. Effect of splenectomy on hamster-to-rat pancreas xenotransplantation. Transplant Proc. 1994;26(3):1180–1.

    CAS  PubMed  Google Scholar 

  215. Ohtsuka S, Hayashi S, Sato E, et al. Hamster-to-rat xenotransplantation of whole pancreas by FK 506 combined with splenectomy. Transplant Proc. 1994;26(2):78l.

    Google Scholar 

  216. Zhan Y, Corbett AJ, Brady JL, et al. Delayed rejection of fetal pig pancreas in CD4 cell deficient mice was correlated with residual helper activity. Xenotransplantation. 2000;7(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  217. Tuch BE, Casamento FM. Outcome of xenografted fetal porcine pancreatic tissue is superior in inbred scid (C.B-17/Icr-scid/scid) compared to outbred nude (CD-1-nu/nu) mice. Cell Transplant. 1999;8(3):259–64.

    Article  CAS  PubMed  Google Scholar 

  218. Tuch BE, Madrid JC. Development of fetal sheep pancreas after transplantation into athymic mice. Cell Transplant. 1996;5(4):483–9.

    Article  CAS  PubMed  Google Scholar 

  219. Yderstraede KB, Starklint H, Thye-Ronn P. Morphologic evaluation of xenotransplanted neonatal islets of Langerhans and fetal pancreata from rats to nude mice. Transplant Proc. 1994;26(3):1123–4.

    CAS  PubMed  Google Scholar 

  220. Tuch BE. Reversal of diabetes by human fetal pancreas. Optimization of requirements in the hyperglycemic nude mouse. Transplantation. 1991;51(3):557–62.

    Article  CAS  PubMed  Google Scholar 

  221. Tuch BE, Monk RS, Beretov J. Reversal of diabetes in athymic rats by transplantation of human fetal pancreas. Transplantation. 1991;52(1):172–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Farney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farney, A.C., Prieto, M. (2023). Experimental Pancreas Transplantation. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics