Skip to main content

Nephropathy

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

The lesions of diabetic nephropathy (DN) are usually considered to be irreversible. Pancreas transplantation is the only available treatment able to consistently restore long-term normoglycemia without exposing the patients to the risks of severe hypo- and hyperglycemia; thus allowing testing the effects of very long-term euglycemia in preventing, halting, and reversing DN. Pancreas and islet transplantation in animal models have been shown to prevent, ameliorate, or reverse the development of DN lesions. Pancreas transplantation, performed simultaneously or shortly after kidney transplantation in patients with type 1 diabetes, prevents the recurrence of diabetic glomerulopathy lesions.

To determine if DN lesions are reversible in humans, the renal structure was examined in several studies before and 5 and 10 years after pancreas transplantation alone (PTA) in non-uremic patients with long-term type 1 diabetes and mild-to-advanced DN lesions at the time of transplantation. Despite prolonged normoglycemia, diabetic glomerular lesions were not significantly changed at 5 years after PTA. In contrast, glomerular lesions were markedly improved after 10 years: in most patients, the glomerular structure was normal at 10-year follow-up despite the continued administration of calcineurin inhibitors. Similar findings were observed for tubular and interstitial lesions. These studies in PTA recipients demonstrate that the lesions of DN are reversible after successful pancreas transplantation. Moreover, the kidney can undergo substantial architectural remodeling upon long-term normalization of the diabetic milieu.

Clinical outcome results have shown that both simultaneous pancreas and kidney transplantation (SPK) and pancreas after kidney transplantation (PAK) compared with kidney transplantation alone in diabetic recipients significantly improve long-term kidney allograft and patient survival long term by establishing normoglycemia and metabolic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Renal Data System. 2019 USRDS annual data report: epidemiology of kidney disease in the United States 2019. 2020.

    Google Scholar 

  2. Mauer M, Friedman EA. Diabetic nephropathy. Boston: Little, Brown & Co; 1982.

    Google Scholar 

  3. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  CAS  PubMed  Google Scholar 

  5. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  6. Østerby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl. 1974;574:3–82.

    PubMed  Google Scholar 

  7. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care. 1978;1:252–63.

    Article  Google Scholar 

  8. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  9. Parving HH, Rossing P, Hommel E, Smidt UM. Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years’ experience. Am J Kidney Dis. 1995;26:99–107.

    Article  CAS  PubMed  Google Scholar 

  10. Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH. Progression of diabetic nephropathy. Kidney Int. 2001;59:702–9.

    Article  CAS  PubMed  Google Scholar 

  11. Steffes MW, Sutherland DER, Goetz FC, Rich SS, Mauer SM. Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes mellitus. N Engl J Med. 1985;312:1282–7.

    Article  CAS  PubMed  Google Scholar 

  12. Mauer SM, Goetz FC, McHugh LE, et al. Long-term study of normal kidneys transplanted into patients with type I diabetes. Diabetes. 1989;38:516–23.

    Article  CAS  PubMed  Google Scholar 

  13. Mauer SM, Steffes MW, Connett J, Najarian JS, Sutherland DE, Barbosa J. The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes. 1983;32:948–52.

    Article  CAS  PubMed  Google Scholar 

  14. Mauer SM, Miller K, Goetz FC, et al. Immunopathology of renal extracellular membranes in kidneys transplanted into patients with diabetes mellitus. Diabetes. 1976;25:709.

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa J, Steffes MW, Sutherland DE, Connett JE, Rao KV, Mauer SM. Effect of glycemic control on early diabetic renal lesions. A 5-year randomized controlled clinical trial of insulin-dependent diabetic kidney transplant recipients. JAMA. 1994;272:600–6.

    Article  CAS  PubMed  Google Scholar 

  16. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  17. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74:1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes. 1994;43:1358–64.

    Article  CAS  PubMed  Google Scholar 

  19. Brito PL, Fioretto P, Drummond K, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53:754–61.

    Article  CAS  PubMed  Google Scholar 

  20. Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes. 1992;41:679–84.

    Article  CAS  PubMed  Google Scholar 

  21. Falk RJ, Scheinman JI, Mauer SM, Michael AF. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes. 1983;32(Suppl 2):34–9.

    Article  PubMed  Google Scholar 

  22. Zhu D, Kim Y, Steffes MW, Groppoli TJ, Butkowski RJ, Mauer SM. Glomerular distribution of type IV collagen in diabetes by high resolution quantitative immunochemistry. Kidney Int. 1994;45:425–33.

    Article  CAS  PubMed  Google Scholar 

  23. Moriya T, Groppoli TJ, Kim Y, Mauer M. Quantitative immunoelectron microscopy of type VI collagen in glomeruli in type I diabetic patients. Kidney Int. 2001;59:317–23.

    Article  CAS  PubMed  Google Scholar 

  24. Steffes MW, Barbosa J, Basgen JM, Sutherland DE, Najarian JS, Mauer SM. Quantitative glomerular morphology of the normal human kidney. Lab Investig. 1983;49:82–6.

    CAS  PubMed  Google Scholar 

  25. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320:1161–5.

    Article  CAS  PubMed  Google Scholar 

  26. Borch-Johnsen K, Nørgaard K, Hommel E, et al. Is diabetic nephropathy an inherited complication? Kidney Int. 1992;41:719–22.

    Article  CAS  PubMed  Google Scholar 

  27. Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996;39:940–5.

    Article  CAS  PubMed  Google Scholar 

  28. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:438–43.

    Article  CAS  PubMed  Google Scholar 

  29. Freedman BI, Tuttle AB, Spray BJ. Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1995;25:710–3.

    Article  CAS  PubMed  Google Scholar 

  30. Fioretto P, Steffes MW, Barbosa J, Rich SS, Miller ME, Mauer M. Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes. 1999;48:865–9.

    Article  CAS  PubMed  Google Scholar 

  31. Trevisan R, Fioretto P, Barbosa J, Mauer M. Insulin-dependent diabetic sibling pairs are concordant for sodium-hydrogen antiport activity. Kidney Int. 1999;55:2383–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2018;8(3):91–165.

    Google Scholar 

  33. Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M. The early natural history of nephropathy in type 1 diabetes. III predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54:2164–71.

    Article  CAS  PubMed  Google Scholar 

  34. Bangstad HJ, Osterby R, Hartmann A, Berg TJ, Hanssen KF. Severity of glomerulopathy predicts long-term urinary albumin excretion rate in patients with type 1 diabetes and microalbuminuria. Diabetes Care. 1999;22:314–9.

    Article  CAS  PubMed  Google Scholar 

  35. Caramori ML, Kim Y, Huang C, et al. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes. 2002;51:506–13.

    Article  CAS  PubMed  Google Scholar 

  36. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52:1036–40.

    Article  CAS  PubMed  Google Scholar 

  37. Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996;39:1569–76.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi H, Karasawa R, Inn H, et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus. Kidney Int. 1992;41:749–57.

    Article  CAS  PubMed  Google Scholar 

  39. Nosadini R, Velussi M, Brocco E, et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes. 2000;49:476–84.

    Article  CAS  PubMed  Google Scholar 

  40. Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:1064–70.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson S, Brenner BM. Pathogenesis of diabetic glomerulopathy: hemodynamic considerations. Diabetes Metab Rev. 1988;4:163–77.

    Article  CAS  PubMed  Google Scholar 

  42. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  PubMed  Google Scholar 

  43. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  CAS  PubMed  Google Scholar 

  44. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  45. Kvetny J, Gregersen G, Pedersen RS. Randomized placebo-controlled trial of perindopril in normotensive, normoalbuminuric patients with type 1 diabetes mellitus. QJM. 2001;94:89–94.

    Article  CAS  PubMed  Google Scholar 

  46. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.

    Article  Google Scholar 

  47. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48.

    Article  CAS  PubMed  Google Scholar 

  49. Hocher B, Schwarz A, Reinbacher D, et al. Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron. 2001;87:161–9.

    Article  CAS  PubMed  Google Scholar 

  50. Benz K, Amann K. Endothelin in diabetic renal disease. Contrib Nephrol. 2011;172:139.

    Article  CAS  PubMed  Google Scholar 

  51. Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393:1937–47.

    Article  CAS  PubMed  Google Scholar 

  52. Grune J, Beyhoff N, Smeir E, et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone antifibrotic activity. Hypertension. 2018;71:599–608.

    Article  CAS  PubMed  Google Scholar 

  53. Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  PubMed  Google Scholar 

  54. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.

    Article  CAS  PubMed  Google Scholar 

  55. Pergola PE, Krauth M, Huff JW, et al. Effect of bardoxolone methyl on kidney function in patients with T2D and Stage 3b-4 CKD. Am J Nephrol. 2011;33:469–76.

    Article  CAS  PubMed  Google Scholar 

  56. de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tesch GH, Ma FY, Han Y, Liles JT, Breckenridge DG, Nikolic-Paterson DJ. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes. 2015;64:3903–13.

    Article  CAS  PubMed  Google Scholar 

  58. Lin JH, Zhang JJ, Lin SL, Chertow GM. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease. Nephron. 2015;129:29–33.

    Article  CAS  PubMed  Google Scholar 

  59. Orloff LA, Orloff MS, Orloff SL, Orloff MJ. Lifelong prevention of mesangial enlargement by whole pancreas transplantation in rats with diabetes mellitus. Arch Surg. 1999;134:889–97.

    Article  CAS  PubMed  Google Scholar 

  60. Mauer SM, Sutherland DE, Steffes MW, et al. Pancreatic islet transplantation. Effects on the glomerular lesions of experimental diabetes in the rat. Diabetes. 1974;23:748–53.

    Article  CAS  PubMed  Google Scholar 

  61. Mauer SM, Steffes MW, Sutherland DE, Najarian S, Michael AF, Brown DM. Studies of the rate of regression of the glomerular lesions in diabetic rats treated with pancreatic islet transplantation. Diabetes. 1975;24:280–5.

    Article  CAS  PubMed  Google Scholar 

  62. Steffes MW, Brown DM, Basgen JM, Mauer SM. Amelioration of mesangial volume and surface alterations following islet transplantation in diabetic rats. Diabetes. 1980;29:509–15.

    Article  CAS  PubMed  Google Scholar 

  63. Steffes MW, Vernier RL, Brown DM, Basgen JM, Mauer SM. Diabetic glomerulopathy in the uninephrectomized rat resists amelioration following islet transplantation. Diabetologia. 1982;23:347–53.

    Article  CAS  PubMed  Google Scholar 

  64. Mauer SM, Brown DM, Matas AJ, Steffes MW. Effects of pancreatic islet transplantation on the increased urinary albumin excretion rates in intact and uninephrectomized rats with diabetes mellitus. Diabetes. 1978;27:959–64.

    Article  CAS  PubMed  Google Scholar 

  65. Steffes MW, Brown DM, Basgen JM, Matas AJ, Mauer SM. Glomerular basement membrane thickness following islet transplantation in the diabetic rat. Lab Investig. 1979;41:116–8.

    CAS  PubMed  Google Scholar 

  66. Otsu I, Nozawa M, Tsuchida H, Hirose K. The point of no return in rat diabetic nephropathy: effects of pancreatic transplantation. Transplant Proc. 1992;24:857–8.

    CAS  PubMed  Google Scholar 

  67. Pugliese G, Pricci F, Pesce C, et al. Early, but not advanced, glomerulopathy is reversed by pancreatic islet transplants in experimental diabetic rats: correlation with glomerular extracellular matrix mRNA levels. Diabetes. 1997;46:1198–206.

    Article  CAS  PubMed  Google Scholar 

  68. Bohman SO, Tydén G, Wilczek H, et al. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes. 1985;34:306–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bohman SO, Wilczek H, Tydén G, Jaremko G, Lundgren G, Groth CG. Recurrent diabetic nephropathy in renal allografts placed in diabetic patients and protective effect of simultaneous pancreatic transplantation. Transplant Proc. 1987;19:2290–3.

    CAS  PubMed  Google Scholar 

  70. Wilczek HE, Jaremko G, Tydén G, Groth CG. Pancreatic graft protects a simultaneously transplanted kidney from developing diabetic nephropathy: a 1- to 6-year follow-up study. Transplant Proc. 1993;25:1314–5.

    CAS  PubMed  Google Scholar 

  71. Nyberg G, Holdaas H, Brekke IB, et al. Glomerular ultrastructure in kidneys transplanted simultaneously with a segmental pancreas to patients with type 1 diabetes. Nephrol Dial Transplant. 1996;11:1029–33.

    Article  CAS  PubMed  Google Scholar 

  72. Bilous RW, Mauer SM, Sutherland DE, Najarian JS, Goetz FC, Steffes MW. The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes. N Engl J Med. 1989;321:80–5.

    Article  CAS  PubMed  Google Scholar 

  73. Fioretto P, Mauer SM, Bilous RW, Goetz FC, Sutherland DE, Steffes MW. Effects of pancreas transplantation on glomerular structure in insulin-dependent diabetic patients with their own kidneys. Lancet. 1993;342:1193–6.

    Article  CAS  PubMed  Google Scholar 

  74. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69–75.

    Article  CAS  PubMed  Google Scholar 

  75. Fioretto P, Steffes MW, Mihatsch MJ, Strøm EH, Sutherland DE, Mauer M. Cyclosporine associated lesions in native kidneys of diabetic pancreas transplant recipients. Kidney Int. 1995;48:489–95.

    Article  CAS  PubMed  Google Scholar 

  76. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–21.

    Article  CAS  PubMed  Google Scholar 

  77. Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78:785–94.

    Article  CAS  PubMed  Google Scholar 

  78. Groeneweg KE, Au YW, Duijs JMGJ, et al. Diabetic nephropathy alters circulating long noncoding RNA levels that normalize following simultaneous pancreas–kidney transplantation. Am J Transplant. 2020;20(12):3451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Myers BD, Sibley R, Newton L, et al. The long-term course of cyclosporine-associated chronic nephropathy. Kidney Int. 1988;33:590–600.

    Article  CAS  PubMed  Google Scholar 

  80. Feutren G, Mihatsch MJ. Risk factors for cyclosporine-induced nephropathy in patients with autoimmune diseases. International Kidney Biopsy Registry of Cyclosporine in Autoimmune Diseases. N Engl J Med. 1992;326:1654–60.

    Article  CAS  PubMed  Google Scholar 

  81. Cantarovich D, Perrone V. Pancreas transplant as treatment to arrest renal function decline in patients with type 1 diabetes and proteinuria. Semin Nephrol. 2012;32:432–6.

    Article  PubMed  Google Scholar 

  82. Fioretto PSM, Sutherland DER, et al. Reversal of cyclosporine-associated interstitial changes in diabetic patients after long-term pancreas transplantation. In: The kidney and hypertension in diabetes mellitus. Berlin: Springer; 1999. p. 10.

    Google Scholar 

  83. Fioretto P, Sutherland DE, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69(5):907–12.

    Article  CAS  PubMed  Google Scholar 

  84. Fioretto P, Najafian B, Sutherland DE, Mauer M. Tacrolimus and cyclosporine nephrotoxicity in native kidneys of pancreas transplant recipients. Clin J Am Soc Nephrol. 2011;6(1):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Groeneweg KE, Au YW, Duijs JMGJ, Florijn BW, et al. Diabetic nephropathy alters circulating long noncoding RNA levels that normalize following simultaneous pancreas-kidney transplantation. Am J Transplant. 2020;20(12):3451–61. https://doi.org/10.1111/ajt.15961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rana A, Gruessner A, Agopian VG, et al. Survival benefit of solid-organ transplant in the United States. JAMA Surg. 2015;150:252–9.

    Article  PubMed  Google Scholar 

  87. Rayhill SC, D'Alessandro AM, Odorico JS, Knechtle SJ, et al. Simultaneous pancreas-kidney transplantation and living related donor renal transplantation in patients with diabetes: is there a difference in survival? Ann Surg. 2000;231(3):417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Esmeijer K, Hoogeveen EK, van den Boog PJM, Konijn C, et al. Superior long-term survival for simultaneous pancreas-kidney transplantation as renal replacement therapy: 30-year follow-up of a nationwide cohort. Diabetes Care. 2020;43(2):321–8.

    Article  PubMed  Google Scholar 

  89. Lindahl JP, Hartmann A, Horneland R, Holdaas H, et al. Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease. Diabetologia. 2013;56(6):1364–71.

    Article  CAS  PubMed  Google Scholar 

  90. Barlow AD, Saeb-Parsy K, Watson CJE. An analysis of the survival outcomes of simultaneous pancreas and kidney transplantation compared to live donor kidney transplantation in patients with type 1 diabetes: a UK Transplant Registry study. Transpl Int. 2017;30:884–92.

    Article  PubMed  Google Scholar 

  91. Gruessner AC, Gruessner RW. Long-term outcome after pancreas transplantation: a registry analysis. Curr Opin Organ Transplant. 2016;21(4):377–85.

    Article  PubMed  Google Scholar 

  92. Wiseman AC, Stites E, Kennealey P. Defining kidney allograft benefit from successful pancreas transplant: separating fact from fiction. Curr Opin Organ Transplant. 2018;23(4):448–53.

    Article  PubMed  Google Scholar 

  93. Nyumura I, Honda K, Babazono T, Taneda S, et al. A long-term prevention of diabetic nephropathy in a patient with type 1 diabetes after simultaneous pancreas and kidney transplantation. Clin Transpl. 2009;23(Suppl 20):54–7.

    Article  Google Scholar 

  94. Nyumura I, Honda K, Babazono T, Horita S, Murakami T, et al. Recurrence of diabetic kidney disease in a type 1 diabetic patient after kidney transplantation. Nephrology. 2015;20(Suppl 2):90–2.

    Article  PubMed  Google Scholar 

  95. Tinel C, Martin L, Cabanne JF, Tanter Y, et al. Early recurrence of Type 2 diabetic nephropathy after kidney transplantation. Clin Nephrol. 2011;75(2):179–80.

    CAS  PubMed  Google Scholar 

  96. Bhalla V, Nast CC, Stollenwerk N, Tran S, et al. Recurrent and de novo diabetic nephropathy in renal allografts. Transplantation. 2003;75(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  97. Fridell JA, Niederhaus S, Curry M, Urban R, Fox A, Odorico J. The survival advantage of pancreas after kidney transplant. Am J Transplant. 2019;19:823–30.

    Article  PubMed  Google Scholar 

  98. Kleinclauss F, Fauda M, Sutherland DER, et al. Pancreas after living donor kidney transplants in diabetic patients: impact on long-term kidney graft function. Clin Transpl. 2009;23:437–46.

    Article  Google Scholar 

  99. Gruessner AC, Sutherland DE, Dunn DL, Najarian JS, et al. Pancreas after kidney transplants in posturemic patients with type I diabetes mellitus. J Am Soc Nephrol. 2001;12(11):2490–9.

    Article  CAS  PubMed  Google Scholar 

  100. Gruessner RW, Gruessner AC. The current state of pancreas transplantation. Nat Rev Endocrinol. 2013;9:555–62.

    Article  CAS  PubMed  Google Scholar 

  101. Gruessner RW, Gruessner AC. Pancreas transplant alone: a procedure coming of age. Diabetes Care. 2013;36(8):2440–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gruessner AC, Sutherland DE. Organ sharing (UNOS) and the international pancreas transplant registry (IPTR). Clin Transpl. 2008;2008:45–56.

    Google Scholar 

  103. Shin S, Jung CH, Choi JY, Kwon HW, et al. Long-term effects of pancreas transplant alone on nephropathy in type 1 diabetic patients with optimal renal function. PLoS One. 2018;13(1):e0191421.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Odorico JS, Voss B, Munoz Del Rio A, et al. Kidney function after solitary pancreas transplantation. Transplant Proc. 2008;40(2):513–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer W. G. Gruessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saggi, S., Fioretto, P., Mauer, M., Gruessner, R.W.G. (2023). Nephropathy. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics