Skip to main content

Intra-urban Spatial Configuration and Hydrological Responses Spatially Distributed in Basins: Contributions to a Sustainable Development

  • Chapter
  • First Online:
Urban Flooding in Brazil

Abstract

Urban floods result from the synergistic effect of elements of both natural and anthropic origin. Among them, the impacts of increasing impervious areas in surface runoff and peak flow during rainfall events are discussed in the scientific literature. In this chapter, we discuss, from the urban hydrology perspective, the hydrological responses that result from the urban spatial configuration and its influence on flood susceptibility. We approach the theoretical principles of urban space compartmentalization into Hydrological Similarity Areas (HSA) and its application in urban planning. We display an example of HSA delimitation and simulate their urban water balance in Belém catchment, Southern Brazil. The results reveal how the heterogeneity of urban spatial configuration influences the behavior of water balance parameters, where the increase in impervious areas increases runoff and decreases infiltration and evapotranspiration rates. In this chapter, we also discuss how nature-based solutions (SbN) applied in strategic areas (HSA) can reduce flood susceptibility and support sustainable urban development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABNT (Associação Brasileira De Normas Técnicas). (1986). NBR 9649: Projetos de redes coletoras de esgoto sanitário. Rio de Janeiro.

    Google Scholar 

  • Asadieh, B., & Krakauer, N. Y. (2017). Global change in streamflow extremes under climate change over the 21st century. Hydrology and Earth System Sciences, 21, 5863–5874. https://doi.org/10.5194/hess-21-5863-2017

    Article  Google Scholar 

  • Assumpção, A. P., & Marçal, M. S. (2012). Retificação dos canais fluviais e mudanças geomorfológicas na planície do rio Macaé (RJ). Revista de Geografia (UFPE)., 29(3), 19–36.

    Google Scholar 

  • Bigarella, J. J., & Salamuni, R. (1962). Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da UFPR. Geologia, 7, 1–164.

    Google Scholar 

  • Brembatti, K. Alguns bairros de Curitiba gastam três vezes mais água que outros. [Some Neighborhoods in Curitiba Use Three Times More Water than Others. Gazeta do Povo. Curitiba. December 4. Avaliable in: http://www.gazetadopovo.com.br/vida-e-cidadania/alguns-bairros-de-curitiba-gastam-tres-vezes-mais-agua-queoutros-eh0o54jg7f7ivu35nlp19yvym. Access in: 12/02/2019.

  • Carvalho, J. W. L. T., Marangon, F. H. S., & Santos, I. (2020). Recuperação de rios urbanos: da interdependência e sincronicidade dos processos de desnaturalização em rios e bacias hidrográficas urbanas. Revista do Departamento de Geografia da USP, 40, 163–174. https://doi.org/10.11606/rdg.v40i0.162247

    Google Scholar 

  • Carvalho, J. W. L. T., & Santos, I. (2021). Urban configuration and water balance with AquaCycle model in the Belém catchment, southern Brazil. Revista Caminhos de Geografia, 22(79), 149–160. https://doi.org/10.14393/RCG227953860

    Article  Google Scholar 

  • Cleugh, H. A., Bui, E., Simon, D., Xu, J., & Mitchell, V. G. (2005). The impact of suburban design on water use and microclimate. Proceedings of the MODSIM05, Melbourne, 2019–2025.

    Google Scholar 

  • Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (Eds.). (2016). Nature-based solutions to address global societal challenges. IUCN.

    Google Scholar 

  • Cunha, S. B. (2012). Rios desnaturalizados. In J. L. Barbosa & (Org.) (Eds.), Ordenamento Territorial e Ambiental (1st ed., pp. 171–119). EDUFF.

    Google Scholar 

  • CURITIBA. Plano Municipal de Saneamento de Curitiba: PMS. [Curitiba Municipal Sanitation Plan: MSP] Curitiba, 2013. Available in: http://multimidia.curitiba.pr.gov.br/2013/00142056.pdf

  • Du, S., Wang, C., Shen, J., Wen, J., Gao, J., Wu, J., et al. (2019). Mapping the capacity of concave green land in mitigating urban pluvial floods and its beneficiaries. Sustainable Cities and Society, 44, 774–782.

    Article  Google Scholar 

  • Goudard, G. (2019). Eventos pluviais extremos e riscos hidrometeorológicos híbridos na bacia do Alto Iguaçu. Dissertação, Mestrado em Geografia, Universidade Federal do Paraná, Curitiba.

    Google Scholar 

  • Goudard, G., & Mendonça, F. (2020). Eventos e episódios pluviais extremos: a configuração de riscos hidrometeorológicos em Curitiba (Paraná-Brasil). IdeAs. Idées d'Amériques, (15).

    Google Scholar 

  • IBGE (Instituto Brasileiro De Geografia E Estatística). (2010). Censo 2010. Retrieved from http://censo2010.ibge.gov.br/resultados/resumo

  • IBGE (Instituto Brasileiro De Geografia E Estatística). (2008). Pesquisa Nacional de Saneamento Básico. Retrieved from https://sidra.ibge.gov.br/tabela/2245#resultado

  • IPPUC - Instituto de pesquisas e planejamento urbano de curitiba. (2012). Geoprocessing: Shapefiles Curitiba. Curitiba: IPPUC. Availiable in: http://ippuc.org.br/geodownloads/geo.htm. Access in 12/25/2019.

  • IPCC. Summary for Policymakers. (2018). In V. Masson-Delmotte, P. Zhai, H. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press.

    Google Scholar 

  • Jurczak, T., Wagner, I., Kaczkowski, Z., Szklarek, S., & Zalewski, M. (2018). Hybrid system for the purification of street stormwater runoff supplying urban recreation reservoirs. Ecological Engineering, 110, 67–77. https://doi.org/10.1016/j.ecoleng.2017.09.019

    Article  Google Scholar 

  • Last, E., & Mackay, R. (2007). Developing a new scoping model for urban water sustainability. 2° Switch Scientific Meeting.

    Google Scholar 

  • Lee, J., Pak, G., Yoo, C., Kim, S., & Yoon, J. (2010). Effects of land use change and water reuse options on urban water cycle. Journal of Environmental Sciences, 22(6), 923–928. https://doi.org/10.1016/S1001-0742(09)60199-6

    Article  Google Scholar 

  • MDR (Ministério do Desenvolvimento Regional). (2020). “Do SNIS ao SINISA. Informações para planejar o abastecimento de água”. Diagnóstico SNIS-AE 2019. Brasília. Retrieved from http://www.snis.gov.br/downloads/cadernos/2019/DO_SNIS_AO_SINISA_AGUA_SNIS_2019.pdf.

  • Mejía, A., Daly, E., Rossel, F., Jovanovic, T., & Gironas, J. (2014). A stochastic model of streamflow for urbanized basins. Water Resources Research, 50, 1984–2001. https://doi.org/10.1002/2013WR014834

    Article  Google Scholar 

  • Mitchell, V. G. (2005). Aquacycle User Guide. CRC for Catchment Hydrology. Monash University, Melbourne, Australia. Retrieved from https://toolkit.ewater.org.au/Tools/Aquacycle/documentation.

  • Mitchell, V. G., & Diaper, C. (2005). UVQ: A tool for assessing the water and contaminant balance impacts of urban development scenarios. Water Science & Technology, 52(12), 91–98. https://doi.org/10.2166/wst.2005.0435

    Article  Google Scholar 

  • Mitchell, V. G., Cleugh, H. A., Grimmond, C. S. B., & Xu, J. (2008). Linking urban water balance and energy balance models to analyse urban design options. Hydrological Processes, 22, 2891–2900. https://doi.org/10.1002/hyp.6868

    Article  Google Scholar 

  • PBMC (Painel Brasileiro De Mudanças Climáticas). (2014). Base científica das mudanças climáticas. Contribuição do grupo de trabalho. In T. Ambrizzi & M. Araujo (Eds.), COPPE. Universidade Federal do Rio de Janeiro.

    Google Scholar 

  • Radinja, M., Comas, J., Corominas, L., & Atanasova, N. (2019). Assessing stormwater control measures using modelling and a multi-criteria approach. Journal of Environmental Management, 243, 257–268. https://doi.org/10.1016/j.jenvman.2019.04.102

    Article  Google Scholar 

  • SANEPAR (Companhia de Saneamento do Paraná). (2010). Cadastro técnico. SANEPAR's database.

    Google Scholar 

  • Sartório, M. V. O. (2018). Desnaturalização dos sistemas fluviais urbanos: o caso do canal da costa e do canal Bigossi, Vila Velha (ES). Dissertação, Mestrado em Geografia, Universidade Federal do Espírito Santo, Vitória.

    Google Scholar 

  • Sharma, A. K., Gray, S., Diaper, C., Liston, P., & Howe, C. (2008). Assessing integrated water management options for urban developments – Canberra case study. Urban Water Journal, Londres, Elsevier B.V., 5(2), 147–159. https://doi.org/10.1080/15730620701736829

    Article  Google Scholar 

  • Tucci, C. E. M. (2005). Gestão de águas pluviais urbanas. Programa de Modernização do Setor Saneamento, Secretaria Nacional de Saneamento Ambiental, Ministério das Cidades.

    Google Scholar 

  • Tucci, C. E. M. (2008). Águas Urbanas. Estudos Avançados, 22(63), 97–112.

    Article  Google Scholar 

  • UNESCO. (2018). The United Nations World Water Development report 2018: Nature-based solutions for water. UNESCO.

    Google Scholar 

  • UNESCO. (2020). The United Nations World Water Development report 2020: Water and climate change. UNESCO.

    Google Scholar 

  • UNESCO. (2021). The United Nations World Water Development report 2020: Valuing water. UNESCO.

    Google Scholar 

  • UN-HABITAT. (2016). World Cities Report 2016: Urbanization and development, emerging futures. United Nations Human Settlements Programme.. Retrieved from https://www.unhabitat.org/wp-content/uploads/2014/03/WCR-%20Full-Report-2016.pdf.

  • Versini, P. A., Kotelnikova, N., Poulhes, A., Tchiguirinskaia, I., Schertzer, D., & Leurent, F. (2018). A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Landscape and Urban Planning, 173, 60–63. https://doi.org/10.1016/j.landurbplan.2018.02.001

    Article  Google Scholar 

  • Xu, C., Rahman, M., Haase, D., Wu, Y., Su, M., & Pauleit, S. (2020). Surface runoff in urban areas: The role of residential cover and urban growth form. Journal of Cleaner Production, 121421. https://doi.org/10.1016/j.jclepro.2020.121421

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Carvalho, J.W.L.T., dos Santos, I. (2023). Intra-urban Spatial Configuration and Hydrological Responses Spatially Distributed in Basins: Contributions to a Sustainable Development. In: Mendonça, F., Farias, A., Buffon, E. (eds) Urban Flooding in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-031-20898-0_2

Download citation

Publish with us

Policies and ethics