Skip to main content

Robust Subspace Clustering Based on Latent Low-rank Representation with Weighted Schatten-p Norm Minimization

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

Abstract

Subspace clustering, which aims to cluster the high-dimensional data samples drawn from a union of multiple subspaces, has drawn much attention in machine learning and computer vision. As a typical subspace clustering method, latent low-rank representation (LLRR) can handle high-dimensional data efficiently. However, the nuclear norm in its formulation is not the optimal approximation of the rank function, which may lead to a suboptimal solution for the original rank minimization problem. In this paper, a weighted Schatten-p norm (WSN), which can better induce low rank, is used to replace the nuclear norm in LLRR, resulting in a novel latent low-rank representation model (WSN-LLRR) for subspace clustering. Furthermore, considering both the accuracy and convergence rate, we present an efficient optimization algorithm by using the alternating direction method of multipliers (ADMM) to solve the proposed model. Finally, experimental results on several real-world subspace clustering datasets show that the performance of our proposed method is better than several state-of-the-art methods, which demonstrates that WSN-LLRR can get a better accurate low-rank solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. learn. 3(1), 1–122 (2011)

    Google Scholar 

  2. Cao, J., Fu, Y., Shi, X., Ling, B.W.K.: Subspace clustering based on latent low rank representation with schatten-p Norm. In: 2020 2nd World Symposium on Artificial Intelligence (WSAI), pp. 58–62. IEEE (2020)

    Google Scholar 

  3. Chen, J., Mao, H., Sang, Y., Yi, Z.: Subspace clustering using a symmetric low-rank representation. Knowl.-Based Syst. 127, 46–57 (2017)

    Article  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  5. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  6. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  MATH  Google Scholar 

  7. Kang, Z., Peng, C., Cheng, Q.: Robust subspace clustering via tighter rank approximation. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 393–401 (2015)

    Google Scholar 

  8. Khachatryan, A., Müller, E., Stier, C., Böhm, K.: Improving accuracy and robustness of self-tuning histograms by subspace clustering. IEEE Trans. Knowl. Data Eng. 27(9), 2377–2389 (2015)

    Article  Google Scholar 

  9. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  10. Liu, G., Lin, Z., Yu, Y., et al.: Robust subspace segmentation by low-rank representation. In: ICML. Citeseer. vol. 1, p. 8 (2010)

    Google Scholar 

  11. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International Conference on Computer Vision, pp. 1615–1622. IEEE (2011)

    Google Scholar 

  12. Lu, L., Vidal, R.: Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 593–600 (2006)

    Google Scholar 

  13. Luo, X., Wu, H., Wang, Z., Wang, J., Meng, D.: A novel approach to large-scale dynamically weighted directed network representation. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021)

    Google Scholar 

  14. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Nat. Lang. Eng. 16(1), 100–103 (2010)

    MATH  Google Scholar 

  15. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)

    Google Scholar 

  16. Nie, F., Huang, H., Ding, C.: Low-rank matrix recovery via efficient schatten p-Norm minimization. In: Twenty-sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  17. Ren, Z., Wu, B., Zhang, X., Sun, Q.: Image set classification using candidate sets selection and improved reverse training. Neurocomputing 341, 60–69 (2019)

    Article  Google Scholar 

  18. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)

    Google Scholar 

  19. Santos, J.M., Embrechts, M.: On the use of the adjusted rand index as a metric for evaluating supervised classification. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 175–184. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04277-5_18

    Chapter  Google Scholar 

  20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  21. Wang, Z., et al.: Large-scale affine matrix rank minimization with a novel nonconvex regularizer. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4661–4675 (2022)

    Article  MathSciNet  Google Scholar 

  22. Wang, Z., Wang, W., Wang, J., Chen, S.: Fast and efficient algorithm for matrix completion via closed-form 2/3-thresholding operator. Neurocomputing 330, 212–222 (2019)

    Article  Google Scholar 

  23. Xie, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W., Zhang, L.: Weighted schatten \( p \)-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842–4857 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, S., Yiquan, W.: Subspace clustering based on latent low rank representation with frobenius norm minimization. Neurocomputing 275, 2479–2489 (2018)

    Article  Google Scholar 

  25. Zhang, S., Wong, H.S., Shen, Y.: Generalized adjusted rand indices for cluster ensembles. Pattern Recognit. 45(6), 2214–2226 (2012)

    Article  MATH  Google Scholar 

  26. Zhang, T., Tang, Z., Liu, Q.: Robust subspace clustering via joint weighted schatten-p Norm and LQ norm minimization. J. Electron. Imaging 26(3), 033021 (2017)

    Article  Google Scholar 

  27. Zhang, X., Xu, C., Sun, X., Baciu, G.: Schatten-q regularizer constrained low rank subspace clustering model. Neurocomputing 182, 36–47 (2016)

    Article  Google Scholar 

  28. Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.: A generalized iterated shrinkage algorithm for non-convex sparse coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 217–224 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Q., Wang, Z., Chen, W. (2022). Robust Subspace Clustering Based on Latent Low-rank Representation with Weighted Schatten-p Norm Minimization. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics