Skip to main content

Temporal Edge-Aware Hypergraph Convolutional Network for Dynamic Graph Embedding

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

Graph embedding is a critical aspect of network analysis that helps to advance various real-world applications such as social recommendation and protein structure prediction. Most of the existing graph embedding methods are designed for static graphs while many real-world graphs intrinsically behave as dynamic graphs. Recent works try to combine graph neural networks(GNN) with recurrent neural networks to address this issue. However, these methods can not independently utilize GNN models to cope with dynamic graphs and they ignore the inner edge-level correlations in dynamic graphs. To tackle these problems, we propose a novel dynamic graph embedding framework in this paper, called DynHyper. Specifically, we introduce a temporal hypergraph construction to capture the local structure information and temporal dynamics simultaneously. Then, we employ a hyperedge projection to obtain edge-level correlations. Further, we propose a temporal edge-aware hypergraph convolution to transmit and aggregate the messages in the temporal hypergraph. We conduct our experiments on seven real-world datasets to evaluate the effectiveness of DynHyper in both link prediction and node classification tasks. Experimental results show that DynHyper significantly outperforms all baselines, especially on the more complex datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.yelp.com/dataset/.

  2. 2.

    https://tianchi.aliyun.com/competition/entrance/231719/information/.

  3. 3.

    https://cse.msu.edu/~tangjili/trust.html.

References

  1. Cai, H., Zheng, V.W., Chang, K.C.C.J.I.T.O.K., Engineering, D.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Google Scholar 

  2. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  3. Fu, S., Liu, W., Zhang, K., Zhou, Y.: Example-feature graph convolutional networks for semi-supervised classification. Neurocomputing 461, 63–76 (2021)

    Article  Google Scholar 

  4. Goyal, P., Chhetri, S.R., Canedo, A.J.K.B.S.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)

    Google Scholar 

  5. Goyal, P., Ferrara, E.J.K.B.S.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Google Scholar 

  6. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

    Google Scholar 

  8. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM Trans. Interact. Intell. syst. (TIIS) 5(4), 1–19 (2015)

    Google Scholar 

  9. Heidari, F., Papagelis, M.: EvoNRL: evolving network representation learning based on random walks. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 457–469. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_37

    Chapter  Google Scholar 

  10. Jiang, Y., Ma, H., Liu, Y., Li, Z., Chang, L.: Enhancing social recommendation via two-level graph attentional networks. Neurocomputing 449, 71–84 (2021)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net (2017)

    Google Scholar 

  12. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  13. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: scalable dynamic network embedding. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3762–3765. IEEE (2018)

    Google Scholar 

  14. Manessi, F., Rozza, A., Manzo, M.J.P.R.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)

    Article  Google Scholar 

  15. Mizerka, J., Stróżyńska-Szajek, A., Mizerka, P.J.F.R.L.: The role of bitcoin on developed and emerging markets-on the basis of a bitcoin users graph analysis. Finan. Res. Lett. 35, 101489 (2020)

    Google Scholar 

  16. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  17. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  18. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DYSAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  19. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  20. Shi, M., Huang, Y., Zhu, X., Tang, Y., Zhuang, Y., Liu, J.: GAEN: graph attention evolving networks. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI) (2021)

    Google Scholar 

  21. Stehlé, J., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

    Article  Google Scholar 

  22. Tian, X., Ding, C.H., Chen, S., Luo, B., Wang, X.: Regularization graph convolutional networks with data augmentation. Neurocomputing 436, 92–102 (2021)

    Article  Google Scholar 

  23. Wang, S., Fu, K., Sun, X., Zhang, Z., Li, S., Jin, L.: Hierarchical-aware relation rotational knowledge graph embedding for link prediction. Neurocomputing 458, 259–270 (2021)

    Article  Google Scholar 

  24. Wang, Y., You, Z.H., Yang, S., Li, X., Jiang, T.H., Zhou, X.J.C.: A high efficient biological language model for predicting protein-protein interactions. Cells 8(2), 122 (2019)

    Article  Google Scholar 

  25. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: Netwalk: a flexible deep embedding approach for anomaly detection in dynamic networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2672–2681 (2018)

    Google Scholar 

  26. Zhang, Z., Cui, P., Pei, J., Wang, X., Zhu, W.: Timers: error-bounded SVD restart on dynamic networks. In: Thirty-Second AAAI conference on artificial intelligence (2018)

    Google Scholar 

  27. Zheng, W., Qian, F., Zhao, S., Zhang, Y.: M-GWNN: multi-granularity graph wavelet neural networks for semi-supervised node classification. Neurocomputing 453, 524–537 (2021)

    Article  Google Scholar 

  28. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Guangdong Provincial Key Laboratory of Intellectual Property and Big Data (2018B030322016), the National Natural Science Foundation of China (U1701266), Special Projects for Key Fields in Higher Education of Guangdong, China(2021ZDZX1042), the Natural Science Foundation of Guangdong Province, China(2022A1515011146), Key Field R &D Plan Project of Guanzhou(202206070003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyuan Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, D., Lei, F. (2022). Temporal Edge-Aware Hypergraph Convolutional Network for Dynamic Graph Embedding. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics