Skip to main content

The Impact of an Adverse Intrauterine Environment on Neurodevelopment

  • Chapter
  • First Online:
Neurodevelopmental Pediatrics

Abstract

This chapter examines the impact of intrauterine conditions and an adverse intrauterine environment on neurodevelopment, with a specific focus on inflammation. Notably, chorioamnionitis, hypoxia-ischemia, placental insufficiency, and certain toxins, such as opioids and alcohol, can catalyze a pro-inflammatory intrauterine microenvironment and facilitate inflammatory signal transduction through the maternal–placental–fetal brain axis. Both molecular and cellular inflammatory mediators play essential roles in the pathophysiology of perinatal brain injury, and can confer damage to the developing central nervous system. In addition to causing direct injury, these mediators, including activated immune cells, chemokines, and cytokines, are key to priming the developing immune system and contributing to immune cell memory, potentially resulting in aberrant neural-immune signaling and exaggerated responses to subsequent inflammatory stimuli later in life. Indeed, this sustained immune hyperreactivity leaves both the immature brain and immune system vulnerable over extended developmental periods. Primary sequelae of severe and persistent intrauterine inflammation can manifest as a broad spectrum of perinatal brain injury, with the increased incidence of cerebral palsy, deficits of cognition, and neuropsychiatric conditions. While specific, targeted therapies remain elusive, emerging interventions aimed at neurorepair and neurorestoration may combat the brain injury associated with preterm birth and other conditions associated with robust intrauterine and perinatal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIUI:

Ascending Intrauterine Inflammation

AP-1:

activator protein 1

BBB:

blood–brain barrier

CCL:

C-C motif ligand chemokine

CD:

cluster of differentiation

CHORIO:

chorioamnionitis

CNS:

central nervous system

Cox:

cyclooxygenase

CP:

cerebral palsy

CRP:

C-reactive protein

CXCL:

C-X-C motif ligand chemokine

CXCR:

C-X-C motif chemokine receptor

DAMPS:

Damage-Associated Molecular Patterns

FIRS:

fetal inflammatory response syndrome

HI:

hypoxia-ischemia

HIE:

hypoxic ischemic encephalopathy

IFN:

gamma- interferon gamma

IL:

interleukin

IUGR:

Intrauterine growth restriction

IVH:

intraventricular hemorrhage

LPS:

lipopolysaccharide

MCP-1:

monocyte chemoattractant protein-1

MHC:

major histocompatibility complex

MMP:

matrix metalloproteinase

MPO:

myeloperoxidase

NF-kB:

nuclear factor kappa-light-chain-enhancer of activated B cells

OPC:

oligodendrocyte progenitor cell

P:

postnatal

PBI:

perinatal brain injury

PBMC:

peripheral blood mononuclear cell

PHHP:

posthemorrhagic hydrocephalus of prematurity

PMN:

polymorphonuclear leukocytes

Poly(I:C):

 Polyinosinic:polycytidylic acid

RANTES:

regulated on activation, normal T cell expressed and secreted

SIRS:

systemic inflammatory response syndrome

SPIHR:

sustained peripheral immune hyperreactivity

STAT:

signal transducer and activator of transcription

TLR:

toll-like receptor

TNF:

tumor necrosis factor

References

  1. Knuesel I, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–60.

    Article  CAS  Google Scholar 

  2. Sirnes E, et al. Brain morphology in school-aged children with prenatal opioid exposure: a structural MRI study. Early Hum Dev. 2017;106-107:33–9.

    Article  CAS  Google Scholar 

  3. Walker CK, et al. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154–62.

    Article  Google Scholar 

  4. Parra-Saavedra M, et al. Neurodevelopmental outcomes of near-term small-for-gestational-age infants with and without signs of placental underperfusion. Placenta. 2014;35(4):269–74.

    Article  Google Scholar 

  5. Anblagan D, et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci Rep. 2016;6:37932.

    Article  CAS  Google Scholar 

  6. Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37(2):339–54.

    Article  Google Scholar 

  7. Kim CJ, et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(4 Suppl):S29–52.

    Article  Google Scholar 

  8. Maisonneuve E, et al. Impact of clinical and/or histological chorioamnionitis on neurodevelopmental outcomes in preterm infants: a literature review. J Gynecol Obstet Hum Reprod. 2017;46(4):307–16.

    Article  CAS  Google Scholar 

  9. Park JW, Park KH, Jung EY. Clinical significance of histologic chorioamnionitis with a negative amniotic fluid culture in patients with preterm labor and premature membrane rupture. PLoS One. 2017;12(3):e0173312.

    Article  Google Scholar 

  10. Bracci R, Buonocore G. Chorioamnionitis: a risk factor for fetal and neonatal morbidity. Biol Neonate. 2003;83(2):85–96.

    Article  Google Scholar 

  11. Yoon BH, et al. Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am J Obstet Gynecol. 1995;172(3):960–70.

    Article  CAS  Google Scholar 

  12. Yoon BH, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000;183(5):1124–9.

    Article  CAS  Google Scholar 

  13. Redline RW. Inflammatory responses in the placenta and umbilical cord. Semin Fetal Neonatal Med. 2006;11(5):296–301.

    Article  Google Scholar 

  14. Redline RW. Correlation of placental pathology with perinatal brain injury. Surg Pathol Clin. 2013;6(1):153–80.

    Article  Google Scholar 

  15. Romero R, et al. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med. 2016;44(1):5–22.

    CAS  Google Scholar 

  16. Romero R, et al. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39.

    Article  CAS  Google Scholar 

  17. Aljerian K. Chorioamnionitis: establishing a correlation between clinical and histological diagnosis. Indian J Pathol Microbiol. 2020;63(1):44–8.

    Article  Google Scholar 

  18. Wu YW, et al. Placental pathology and neonatal brain MRI in a randomized trial of erythropoietin for hypoxic-ischemic encephalopathy. Pediatr Res. 2020;87(5):879–84.

    Article  CAS  Google Scholar 

  19. Jantzie LL, Robinson S. Placenta and perinatal brain injury: the gateway to individualized therapeutics and precision neonatal medicine. Pediatr Res. 2020;87(5):807–8.

    Article  Google Scholar 

  20. Pazandak C, et al. Placental pathology, cerebral blood flow, and intraventricular hemorrhage in preterm infants: is there a link? Pediatr Neurol. 2020;108:65–9.

    Article  Google Scholar 

  21. Sagay AS. Histological Chorioamnionitis. J West Afr Coll Surg. 2016;6(3):x–xiii.

    CAS  Google Scholar 

  22. Nadeau-Vallee M, et al. Sterile inflammation and pregnancy complications: a review. Reproduction. 2016;152(6):R277–92.

    Article  CAS  Google Scholar 

  23. Czikk MJ, McCarthy FP, Murphy KE. Chorioamnionitis: from pathogenesis to treatment. Clin Microbiol Infect. 2011;17(9):1304–11.

    Article  CAS  Google Scholar 

  24. Han YW, et al. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009;47(1):38–47.

    Article  Google Scholar 

  25. Buhimschi IA, et al. Advances in medical diagnosis of intra-amniotic infection. Expert Opin Med Diagn. 2013;7(1):5–16.

    Article  Google Scholar 

  26. Oh JW, et al. The relationship among the progression of inflammation in umbilical cord, fetal inflammatory response, early-onset neonatal sepsis, and chorioamnionitis. PLoS One. 2019;14(11):e0225328.

    Article  CAS  Google Scholar 

  27. Steel JH, et al. Maternal origin of inflammatory leukocytes in preterm fetal membranes, shown by fluorescence in situ hybridisation. Placenta. 2005;26(8–9):672–7.

    Article  CAS  Google Scholar 

  28. Galinsky R, et al. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy. 2013;2013:412831.

    Article  Google Scholar 

  29. Holmlund U, et al. Expression and regulation of the pattern recognition receptors toll-like receptor-2 and toll-like receptor-4 in the human placenta. Immunology. 2002;107(1):145–51.

    Article  CAS  Google Scholar 

  30. Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab. 2010;30(3):459–73.

    Article  CAS  Google Scholar 

  31. Kielian T, Barry B, Hickey WF. CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol. 2001;166(7):4634–43.

    Article  CAS  Google Scholar 

  32. Luster AD. Chemokines — chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338(7):436–45.

    Article  CAS  Google Scholar 

  33. Ben-Baruch A, Michiel DF, Oppenheim JJ. Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem. 1995;270(20):11703–6.

    Article  CAS  Google Scholar 

  34. Veenstra M, Ransohoff RM. Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol. 2012;246(1–2):1–9.

    Article  CAS  Google Scholar 

  35. Bergeron J, et al. Activation of the IL-1beta/CXCL1/MMP-10 axis in chorioamnionitis induced by inactivated group B streptococcus. Placenta. 2016;47:116–23.

    Article  CAS  Google Scholar 

  36. Maxwell JR, et al. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta. 2015;36(12):1378–84.

    Article  CAS  Google Scholar 

  37. Yellowhair TR, et al. Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol. 2018;301(Pt B):110–9.

    Article  CAS  Google Scholar 

  38. Yellowhair TR, et al. CXCR2 blockade mitigates neural cell injury following preclinical Chorioamnionitis. Front Physiol. 2019;10:324.

    Article  Google Scholar 

  39. Makrigiannakis A, et al. Fetomaternal immunotolerance. Am J Reprod Immunol. 2008;60(6):482–96.

    Article  CAS  Google Scholar 

  40. Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol. 2009;182(5):2700–7.

    Article  CAS  Google Scholar 

  41. Dowling O, et al. Magnesium sulfate reduces bacterial LPS-induced inflammation at the maternal-fetal interface. Placenta. 2012;33(5):392–8.

    Article  CAS  Google Scholar 

  42. Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol. 2020;11:649.

    Article  CAS  Google Scholar 

  43. Paton MCB, et al. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: designing targeted stem cell therapies. Front Neurosci. 2017;11:200.

    Article  Google Scholar 

  44. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–7.

    Article  CAS  Google Scholar 

  45. du Plessis AJ, Volpe JJ. Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol. 2002;15(2):151–7.

    Article  Google Scholar 

  46. Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol. 2005;18(2):117–23.

    Article  CAS  Google Scholar 

  47. Hagberg H, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11(4):192–208.

    Article  CAS  Google Scholar 

  48. Faye-Petersen OM. The placenta in preterm birth. J Clin Pathol. 2008;61(12):1261–75.

    Article  CAS  Google Scholar 

  49. Goldenberg RL, et al. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  Google Scholar 

  50. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–35.

    Article  CAS  Google Scholar 

  51. Wintermark P, et al. Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol. 2010;203(6):579 e1–9.

    Article  Google Scholar 

  52. Dammann O, Leviton A. Intermittent or sustained systemic inflammation and the preterm brain. Pediatr Res. 2014;75(3):376–80.

    Article  Google Scholar 

  53. Dammann O, O’Shea TM. Cytokines and perinatal brain damage. Clin Perinatol. 2008;35(4):643–63. v

    Article  Google Scholar 

  54. Chaemsaithong P, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016;29(3):360–7.

    Article  CAS  Google Scholar 

  55. Chaemsaithong P, et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016;29(3):349–59.

    Article  CAS  Google Scholar 

  56. Martinez-Portilla RJ, et al. Maternal serum Interleukin-6: a non-invasive predictor of histological Chorioamnionitis in women with preterm-Prelabor rupture of membranes. Fetal Diagn Ther. 2019;45(3):168–75.

    Article  Google Scholar 

  57. Revello R, et al. Differential amniotic fluid cytokine profile in women with chorioamnionitis with and without funisitis. J Matern Fetal Neonatal Med. 2016;29(13):2161–5.

    Article  CAS  Google Scholar 

  58. Combs CA, et al. Detection of microbial invasion of the amniotic cavity by analysis of cervicovaginal proteins in women with preterm labor and intact membranes. Am J Obstet Gynecol. 2015;212(4):482 e1–482 e12.

    Article  Google Scholar 

  59. Bry KJ, et al. Gastric fluid cytokines are associated with chorioamnionitis and white blood cell counts in preterm infants. Acta Paediatr. 2015;104(6):575–80.

    Article  CAS  Google Scholar 

  60. Fricke EM, et al. Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood. Am J Reprod Immunol. 2018;79(5):e12816.

    Article  Google Scholar 

  61. Dueck CC, et al. Ischemic perinatal stroke secondary to chorioamnionitis: a histopathological case presentation. J Child Neurol. 2009;24(12):1557–60.

    Article  Google Scholar 

  62. Lee J, et al. Maternal and infant characteristics associated with perinatal arterial stroke in the infant. JAMA. 2005;293(6):723–9.

    Article  CAS  Google Scholar 

  63. Lee J, et al. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol. 2005;58(2):303–8.

    Article  Google Scholar 

  64. Lee J, et al. Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta. 2013;34(8):681–9.

    Article  CAS  Google Scholar 

  65. Lee SM, et al. Acute histologic chorioamnionitis is a risk factor for adverse neonatal outcome in late preterm birth after preterm premature rupture of membranes. PLoS One. 2013;8(12):e79941.

    Article  Google Scholar 

  66. Wu YW, Lynch JK, Nelson KB. Perinatal arterial stroke: understanding mechanisms and outcomes. Semin Neurol. 2005;25(4):424–34.

    Article  Google Scholar 

  67. O’Shea TM, et al. Elevated concentrations of inflammation-related proteins in postnatal blood predict severe developmental delay at 2 years of age in extremely preterm infants. J Pediatr. 2012;160(3):395–401 e4.

    Article  Google Scholar 

  68. O’Shea TM, et al. Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 mo in extremely preterm infants. Pediatr Res. 2014;75(6):781–7.

    Article  Google Scholar 

  69. Watterberg KL, Scott SM, Naeye RL. Chorioamnionitis, cortisol, and acute lung disease in very low birth weight infants. Pediatrics. 1997;99(2):E6.

    Article  CAS  Google Scholar 

  70. Jan AI, Ramanathan R, Cayabyab RG. Chorioamnionitis and Management of asymptomatic infants >/=35 weeks without empiric antibiotics. Pediatrics. 2017;140(1):e20162744.

    Article  Google Scholar 

  71. Braun D, et al. Low rate of perinatal sepsis in term infants of mothers with Chorioamnionitis. Am J Perinatol. 2016;33(2):143–50.

    Article  Google Scholar 

  72. Sorg AL, et al. Risk factors for perinatal arterial ischaemic stroke: a large case-control study. Dev Med Child Neurol. 2020;62(4):513–20.

    Article  Google Scholar 

  73. Lahra MM, Beeby PJ, Jeffery HE. Maternal versus fetal inflammation and respiratory distress syndrome: a 10-year hospital cohort study. Arch Dis Child Fetal Neonatal Ed. 2009;94(1):F13–6.

    Article  CAS  Google Scholar 

  74. Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol. 2004;190(1):147–51.

    Article  Google Scholar 

  75. Shevell A, et al. Chorioamnionitis and cerebral palsy: lessons from a patient registry. Eur J Paediatr Neurol. 2014;18(3):301–7.

    Article  Google Scholar 

  76. Lachapelle J, et al. Placental pathology in asphyxiated newborns treated with therapeutic hypothermia. J Neonatal Perinatal Med. 2015;8:33–40.

    Article  Google Scholar 

  77. Wu YW, et al. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA. 2003;290(20):2677–84.

    Article  CAS  Google Scholar 

  78. Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol. 2015;6:176.

    Article  Google Scholar 

  79. de Onis M, Blossner M, Villar J. Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr. 1998;52(Suppl 1):S5–15.

    Google Scholar 

  80. Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011;29(6):551–63.

    Article  Google Scholar 

  81. Figueras F, Gardosi J. Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management. Am J Obstet Gynecol. 2011;204(4):288–300.

    Article  Google Scholar 

  82. Brown LD, Hay WW Jr. Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol. 2016;435:69–77.

    Article  CAS  Google Scholar 

  83. Gagnon R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol. 2003;110(Suppl 1):S99–107.

    Article  Google Scholar 

  84. Wixey JA, et al. Review: Neuroinflammation in intrauterine growth restriction. Placenta. 2017;54:117–24.

    Article  Google Scholar 

  85. Neta GI, et al. Umbilical cord serum cytokine levels and risks of small-for-gestational-age and preterm birth. Am J Epidemiol. 2010;171(8):859–67.

    Article  Google Scholar 

  86. Guo R, et al. Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation. Reprod Sci. 2010;17(6):540–8.

    Article  CAS  Google Scholar 

  87. Hartkopf J, et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age. Front Physiol. 2018;9:1278.

    Article  Google Scholar 

  88. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594(4):807–23.

    Article  CAS  Google Scholar 

  89. Baschat AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol. 2011;37(5):501–14.

    Article  CAS  Google Scholar 

  90. Baschat AA, Odibo AO. Timing of delivery in fetal growth restriction and childhood development: some uncertainties remain. Am J Obstet Gynecol. 2011;204(1):2–3.

    Article  Google Scholar 

  91. Musilova I, et al. Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome. Pediatr Res. 2018;83(3):630–7.

    Article  Google Scholar 

  92. Tang Q, et al. The fetal inflammation response syndrome and adverse neonatal outcomes: a meta-analysis. J Matern Fetal Neonatal Med. 2019;34:1–13.

    Google Scholar 

  93. Kuypers E, et al. White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev. 2012;88(12):931–6.

    Article  Google Scholar 

  94. Pickler R, et al. Integrated review of cytokines in maternal, cord, and newborn blood: part ii— associations with early infection and increased risk of neurologic damage in preterm infants. Biol Res Nurs. 2010;11(4):377–86.

    Article  CAS  Google Scholar 

  95. Ratnayake U, et al. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci. 2013;7:180.

    Article  Google Scholar 

  96. Gotsch F, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652–83.

    Article  Google Scholar 

  97. Ardissone AN, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784.

    Article  Google Scholar 

  98. Romero R, Chaiworapongsa T, Espinoza J. Micronutrients and intrauterine infection, preterm birth and the fetal inflammatory response syndrome. J Nutr. 2003;133(5 Suppl 2):1668S–73S.

    Article  CAS  Google Scholar 

  99. Fichorova RN, et al. Systemic inflammation in the extremely low gestational age newborn following maternal genitourinary infections. Am J Reprod Immunol. 2015;73(2):162–74.

    Article  CAS  Google Scholar 

  100. Weitkamp JH, et al. Histological chorioamnionitis shapes the neonatal transcriptomic immune response. Early Hum Dev. 2016;98:1–6.

    Article  CAS  Google Scholar 

  101. Kunze M, et al. Cytokines in noninvasively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol. 2016;215(1):96 e1–8.

    Article  Google Scholar 

  102. Cohen J, et al. GRO alpha in the fetomaternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol. 1996;35(1):23–9.

    Article  CAS  Google Scholar 

  103. Chaiworapongsa T, et al. Evidence for fetal involvement in the pathologic process of clinical chorioamnionitis. Am J Obstet Gynecol. 2002;186(6):1178–82.

    Article  Google Scholar 

  104. Pacora P, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11(1):18–25.

    Article  CAS  Google Scholar 

  105. Du Pont-Thibodeau G, Joyal JS, Lacroix J. Management of neonatal sepsis in term newborns. F1000Prime Rep. 2014;6:67.

    Google Scholar 

  106. Shane AL, Sanchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390(10104):1770–80.

    Article  Google Scholar 

  107. Stoll BJ, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.

    Article  CAS  Google Scholar 

  108. Stoll BJ, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126(3):443–56.

    Article  Google Scholar 

  109. Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr. 2016;28(2):135–40.

    Article  Google Scholar 

  110. Shah, D.K., et al., Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J Pediatr, 2008. 153(2): p. 170–5, 175 e1, 175.e1.

    Google Scholar 

  111. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24.

    Article  Google Scholar 

  112. Malaeb S, Dammann O. Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol. 2009;24(9):1119–26.

    Article  Google Scholar 

  113. Lin CY, et al. Altered inflammatory responses in preterm children with cerebral palsy. Ann Neurol. 2010;68(2):204–12.

    CAS  Google Scholar 

  114. Newville J, et al. Perinatal opioid exposure primes the peripheral immune system toward Hyperreactivity. Front Pediatr. 2020;8:272.

    Article  Google Scholar 

  115. Yellowhair TR, et al. Chorioamnionitis in rats precipitates extended postnatal inflammatory lymphocyte Hyperreactivity. Dev Neurosci. 2019;40:1–11.

    Google Scholar 

  116. Huggard D, et al. Altered toll-like receptor Signalling in children with down syndrome. Mediat Inflamm. 2019;2019:4068734.

    Article  Google Scholar 

  117. Huggard D, et al. Altered endotoxin responsiveness in healthy children with down syndrome. BMC Immunol. 2018;19(1):31.

    Article  CAS  Google Scholar 

  118. Nguyen CN, et al. Neonatal neutrophils with prolonged survival secrete mediators associated with chronic inflammation. Neonatology. 2010;98(4):341–7.

    Article  CAS  Google Scholar 

  119. Dickens AM, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017;10(473):eaai7696.

    Article  Google Scholar 

  120. Kaminski VL, Ellwanger JH, Chies JAB. Extracellular vesicles in host-pathogen interactions and immune regulation - exosomes as emerging actors in the immunological theater of pregnancy. Heliyon. 2019;5(8):e02355.

    Article  Google Scholar 

  121. Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. J Neuroinflammation. 2014;11:68.

    Article  Google Scholar 

  122. Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1652):20130503.

    Article  Google Scholar 

  123. Izquierdo-Useros N, et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 2010;6(3):e1000740.

    Article  Google Scholar 

  124. Pascual M, Ibanez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res. 2020;15(5):796–801.

    Article  Google Scholar 

  125. Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1beta. J Neuroinflammation. 2018;15(1):239.

    Article  Google Scholar 

  126. Yates AG, et al. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link? Front Immunol. 2019;10:2723.

    Article  CAS  Google Scholar 

  127. Dixon CL, et al. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology. 2018;159(5):2229–40.

    Article  CAS  Google Scholar 

  128. Tong M, Chamley LW. Placental extracellular vesicles and feto-maternal communication. Cold Spring Harb Perspect Med. 2015;5(3):a023028.

    Article  CAS  Google Scholar 

  129. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16(5):249–63.

    Article  CAS  Google Scholar 

  130. Li B, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol. 2017;159:50–68.

    Article  CAS  Google Scholar 

  131. Biesmans S, et al. Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but not depressive-like behavior in mice. Biomed Res Int. 2015;2015:716920.

    Article  Google Scholar 

  132. Jantzie LL, et al. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation. 2014;11:131.

    Article  Google Scholar 

  133. Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016;136(Suppl 1):10–7.

    Article  CAS  Google Scholar 

  134. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65.

    Article  CAS  Google Scholar 

  135. McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett. 2020;714:134539.

    Article  CAS  Google Scholar 

  136. Miron VE. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J Leukoc Biol. 2017;101(5):1103–8.

    Article  CAS  Google Scholar 

  137. Miron VE, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.

    Article  CAS  Google Scholar 

  138. Miron VE, Priller J. Investigating microglia in health and disease: challenges and opportunities. Trends Immunol. 2020;41:785–93.

    Article  CAS  Google Scholar 

  139. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

    Article  CAS  Google Scholar 

  140. Cunningham C, et al. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005;25(40):9275–84.

    Article  CAS  Google Scholar 

  141. Puntener U, et al. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation. 2012;9:146.

    Article  CAS  Google Scholar 

  142. Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86.

    Article  CAS  Google Scholar 

  143. Kochanek KD, et al. Annual summary of vital statistics: 2009. Pediatrics. 2012;129(2):338–48.

    Article  Google Scholar 

  144. Anderson PJ. Neuropsychological outcomes of children born very preterm. Semin Fetal Neonatal Med. 2014;19(2):90–6.

    Article  Google Scholar 

  145. Fant ME, et al. The nexus of prematurity, birth defects, and intrauterine growth restriction: a role for plac1-regulated pathways. Front Pediatr. 2014;2:8.

    Article  Google Scholar 

  146. Nosarti C, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69(6):E1–8.

    Article  Google Scholar 

  147. O’Shea TM. Cerebral palsy in very preterm infants: new epidemiological insights. Ment Retard Dev Disabil Res Rev. 2002;8(3):135–45.

    Article  Google Scholar 

  148. Conti N, et al. Term histologic chorioamnionitis: a heterogeneous condition. Eur J Obstet Gynecol Reprod Biol. 2015;188:34–8.

    Article  Google Scholar 

  149. Roberts DJ, et al. Acute histologic chorioamnionitis at term: nearly always noninfectious. PLoS One. 2012;7(3):e31819.

    Article  CAS  Google Scholar 

  150. Blencowe H, et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr Res. 2013;74(Suppl 1):17–34.

    Article  Google Scholar 

  151. McCormick MC, Behrman RE. The quiet epidemic of premature birth: commentary on a recent Institute of Medicine report. Ambul Pediatr. 2007;7(1):8–9.

    Article  Google Scholar 

  152. Mwaniki MK, et al. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379(9814):445–52.

    Article  Google Scholar 

  153. Vos RC, et al. Developmental trajectories of daily activities in children and adolescents with cerebral palsy. Pediatrics. 2013;132(4):e915–23.

    Article  Google Scholar 

  154. Chen A, Oster E, Williams H. Why is infant mortality higher in the United States than in Europe? Am Econ J Econ Policy. 2016;8(2):89–124.

    Article  Google Scholar 

  155. Hodnett ED, Fredericks S, Weston J. Support during pregnancy for women at increased risk of low birthweight babies. Cochrane Database Syst Rev. 2010;6:CD000198.

    Google Scholar 

  156. Kumazaki K, et al. Placental features in preterm infants with periventricular leukomalacia. Pediatrics. 2002;109(4):650–5.

    Article  Google Scholar 

  157. Abdulkadir AA, et al. Placental inflammation and fetal hemodynamics in a rat model of chorioamnionitis. Pediatr Res. 2010;68(6):513–8.

    Article  CAS  Google Scholar 

  158. Redline RW. Disorders of placental circulation and the fetal brain. Clin Perinatol. 2009;36(3):549–59.

    Article  Google Scholar 

  159. Counsell SJ, et al. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain. 2008;131(Pt 12):3201–8.

    Article  Google Scholar 

  160. Counsell SJ, et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics. 2006;117(2):376–86.

    Article  Google Scholar 

  161. Rutherford MA, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics. 1998;102(2 Pt 1):323–8.

    Article  CAS  Google Scholar 

  162. Boardman JP, et al. A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. NeuroImage. 2010;52(2):409–14.

    Article  CAS  Google Scholar 

  163. Torricelli M, et al. Histologic chorioamnionitis at term: implications for the progress of labor and neonatal wellbeing. J Matern Fetal Neonatal Med. 2013;26(2):188–92.

    Article  Google Scholar 

  164. Kuban KC, et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr Neurol. 2015;52(1):42–8.

    Article  Google Scholar 

  165. Leviton A, et al. Systemic inflammation on postnatal days 21 and 28 and indicators of brain dysfunction 2years later among children born before the 28th week of gestation. Early Hum Dev. 2016;93:25–32.

    Article  Google Scholar 

  166. Leviton A, et al. Inflammation-related proteins in the blood of extremely low gestational age newborns. The contribution of inflammation to the appearance of developmental regulation. Cytokine. 2011;53(1):66–73.

    Article  CAS  Google Scholar 

  167. Leviton A, et al. Early postnatal blood concentrations of inflammation-related proteins and microcephaly two years later in infants born before the 28th post-menstrual week. Early Hum Dev. 2011;87(5):325–30.

    Article  CAS  Google Scholar 

  168. Dammann O, et al. Duration of systemic inflammation in the first postnatal month among infants born before the 28th week of gestation. Inflammation. 2016;39(2):672–7.

    Article  CAS  Google Scholar 

  169. Gelderblom M, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849–57.

    Article  Google Scholar 

  170. Jellema RK, et al. Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep. J Neuroinflammation. 2013;10:13.

    Article  CAS  Google Scholar 

  171. Johns CB, et al. Amygdala functional connectivity is associated with social impairments in preterm born young adults. Neuroimage Clin. 2019;21:101626.

    Article  Google Scholar 

  172. Scheinost D, et al. Preterm birth alters neonatal, functional rich club organization. Brain Struct Funct. 2016;221(6):3211–22.

    Article  Google Scholar 

  173. Thomason ME, et al. Weak functional connectivity in the human fetal brain prior to preterm birth. Sci Rep. 2017;7:39286.

    Article  CAS  Google Scholar 

  174. Aisen ML, et al. Cerebral palsy: clinical care and neurological rehabilitation. Lancet Neurol. 2011;10(9):844–52.

    Article  Google Scholar 

  175. O’Shea TM. Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol. 2008;51(4):816–28.

    Article  Google Scholar 

  176. Tronnes H, et al. Risk of cerebral palsy in relation to pregnancy disorders and preterm birth: a national cohort study. Dev Med Child Neurol. 2014;56(8):779–85.

    Article  Google Scholar 

  177. Murphy DJ, Hope PL, Johnson A. Neonatal risk factors for cerebral palsy in very preterm babies: case-control study. BMJ. 1997;314(7078):404–8.

    Article  CAS  Google Scholar 

  178. Kidokoro H, et al. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics. 2014;134(2):e444–53.

    Article  Google Scholar 

  179. Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res. 2018;83(1–2):345–55.

    Article  Google Scholar 

  180. Hollung SJ, et al. Comorbidities in cerebral palsy: a patient registry study. Dev Med Child Neurol. 2020;62(1):97–103.

    Article  Google Scholar 

  181. Smith KJ, et al. Risk of depression and anxiety in adults with cerebral palsy. JAMA Neurol. 2019;76(3):294–300.

    Article  Google Scholar 

  182. Moscuzza F, et al. Correlation between placental histopathology and fetal/neonatal outcome: chorioamnionitis and funisitis are associated to intraventricular haemorrage and retinopathy of prematurity in preterm newborns. Gynecol Endocrinol. 2011;27(5):319–23.

    Article  Google Scholar 

  183. Salas AA, et al. Histological characteristics of the fetal inflammatory response associated with neurodevelopmental impairment and death in extremely preterm infants. J Pediatr. 2013;163(3):652–657.e2.

    Article  Google Scholar 

  184. Shankaran S, et al. Maternal race, demography, and health care disparities impact risk for intraventricular hemorrhage in preterm neonates. J Pediatr. 2014;164(5):1005–1011 e3.

    Article  Google Scholar 

  185. Arayici S, et al. The effect of histological chorioamnionitis on the short-term outcome of preterm infants </=32 weeks: a single-center study. J Matern Fetal Neonatal Med. 2014;27(11):1129–33.

    Article  Google Scholar 

  186. Lu H, et al. Risk factors for intraventricular hemorrhage in preterm infants born at 34 weeks of gestation or less following preterm premature rupture of membranes. J Stroke Cerebrovasc Dis. 2016;25(4):807–12.

    Article  Google Scholar 

  187. Stark MJ, et al. Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Arch Dis Child Fetal Neonatal Ed. 2016;101(2):F137–42.

    Article  Google Scholar 

  188. Lee J, et al. A new anti-microbial combination prolongs the latency period, reduces acute histologic chorioamnionitis as well as funisitis, and improves neonatal outcomes in preterm PROM. J Matern Fetal Neonatal Med. 2016;29(5):707–20.

    Article  Google Scholar 

  189. Edwards JM, et al. Magnesium sulfate for neuroprotection in the setting of chorioamnionitis. J Matern Fetal Neonatal Med. 2018;31(9):1156–60.

    Article  CAS  Google Scholar 

  190. Alan N, et al. Reduced ventricular shunt rate in very preterm infants with severe intraventricular hemorrhage: an institutional experience. J Neurosurg Pediatr. 2012;10(5):357–64.

    Article  Google Scholar 

  191. Yung YC, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011;3(99):99ra87.

    Article  Google Scholar 

  192. Karimy JK, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003.

    Article  CAS  Google Scholar 

  193. Robinson S, et al. Extended combined neonatal treatment with erythropoietin plus melatonin prevents posthemorrhagic hydrocephalus of prematurity in rats. Front Cell Neurosci. 2018;12:322.

    Article  CAS  Google Scholar 

  194. Abdi K, et al. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun. 2018;9(1):1655.

    Article  Google Scholar 

  195. Goulding DS, et al. Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. J Neurosurg Pediatr. 2020;25:1–8.

    Article  Google Scholar 

  196. Orchinik LJ, et al. Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. J Int Neuropsychol Soc. 2011;17(6):1067–79.

    Article  Google Scholar 

  197. Larroque B, et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet. 2008;371(9615):813–20.

    Article  Google Scholar 

  198. Murray E, et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG. 2015;122(8):1062–72.

    Article  CAS  Google Scholar 

  199. Bendix I, et al. Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res. 2019;85(2):198–215.

    Article  Google Scholar 

  200. Beukers F, et al. Fetal growth restriction with brain sparing: neurocognitive and behavioral outcomes at 12 years of age. J Pediatr. 2017;188:103–109 e2.

    Article  Google Scholar 

  201. Nasef N, et al. Effect of clinical and histological chorioamnionitis on the outcome of preterm infants. Am J Perinatol. 2013;30(1):59–68.

    Google Scholar 

  202. Pappas A, et al. Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr. 2014;168(2):137–47.

    Article  Google Scholar 

  203. Roescher AM, et al. Placental pathology, perinatal death, neonatal outcome, and neurological development: a systematic review. PLoS One. 2014;9(2):e89419.

    Article  Google Scholar 

  204. Kaukola T, et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res. 2006;59(3):478–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren L. Jantzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandra, S. et al. (2023). The Impact of an Adverse Intrauterine Environment on Neurodevelopment. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics