Skip to main content

Myelination

  • Chapter
  • First Online:
Neurodevelopmental Pediatrics

Abstract

Myelin is an essential part of the nervous system as it allows for increased and more efficient signal transmission through saltatory conduction. In the central nervous system, myelin sheaths are produced by oligodendrocytes subsequent to the activation of several genes, including the Olig1 and Olig2 transcription factors and Plp1 and Mbp encoding proteins that make up the myelin sheath and which also play roles in oligodendrocyte development from oligodendroglial progenitor cells. Interruption to the function of these genes, such as through inherited mutations, leads to defects in myelin production and abnormal nervous system function that is evident in several demyelinating diseases. However, the regenerative processes of remyelination and innovative therapeutic approaches under clinical development may help to partially alleviate these demyelinating disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci. 2005;25(6):1354–65. https://doi.org/10.1523/JNEUROSCI.3034-04.2005.

    Article  CAS  Google Scholar 

  2. Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 1993;4:191–7.

    Article  Google Scholar 

  3. Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol. 1999;147(6):1145–52. https://doi.org/10.1083/jcb.147.6.1145.

    Article  CAS  Google Scholar 

  4. Morrison BM, Lee Y, Rothstein JD. Oligodendroglia: metabolic supporters of axons. Trends Cell Biol. 2013;23(12):644–51. https://doi.org/10.1016/j.tcb.2013.07.007.

    Article  CAS  Google Scholar 

  5. Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull. 2013;29(2):199–215. https://doi.org/10.1007/s12264-013-1322-2.

    Article  CAS  Google Scholar 

  6. Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006;63(17):1945–61. https://doi.org/10.1007/s00018-006-6094-7.

    Article  CAS  Google Scholar 

  7. Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA, Hahn AT, et al. Neurite outgrowth inhibitor Nogo-a establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci U S A. 2012;109(4):1299–304. https://doi.org/10.1073/pnas.1113540109.

    Article  Google Scholar 

  8. Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22. https://doi.org/10.1038/nature09611.

    Article  CAS  Google Scholar 

  9. Readhead C, Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet. 1990;20(2):213–34.

    Article  CAS  Google Scholar 

  10. Dupree JL, Coetzee A, Blight K, Suzuki K, Popko B. Myelin galactolipids are essential for proper node of ranvier formation in the CNS. J Neurosci. 1998;18:1642–9.

    Article  CAS  Google Scholar 

  11. Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55. https://doi.org/10.1038/nrn2480.

    Article  CAS  Google Scholar 

  12. Campagnoni AT. Molecular biology of myelin proteins from the central nervous system. J Neurochem. 1988;51:1–14.

    Article  CAS  Google Scholar 

  13. Raine CS. Morphology of myelin and myelination. In: Myelin. 2nd ed. New York Plenum Press; 1984. p. 1–41.

    Google Scholar 

  14. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci. 2008;11(12):1392–401. https://doi.org/10.1038/nn.2220.

    Article  CAS  Google Scholar 

  15. Tessitore C, Brunjes PC. A comparative study of myelination in precocial and altericial murid rodents. Brain Res. 1988;471:139–47.

    Article  CAS  Google Scholar 

  16. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861–3.

    Article  CAS  Google Scholar 

  17. Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell. 2014;159(4):766–74. https://doi.org/10.1016/j.cell.2014.10.011.

    Article  CAS  Google Scholar 

  18. Goldman SA, Kuypers NJ. How to make an oligodendrocyte. How to make an oligodendrocyte Development. 2015;142(23):3983–95.

    CAS  Google Scholar 

  19. Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelial of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A. 2004;131:3133–45.

    Google Scholar 

  20. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7(2):136–44. https://doi.org/10.1038/nn1172.

    Article  CAS  Google Scholar 

  21. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci. 2006;9(2):173–9. https://doi.org/10.1038/nn1620.

    Article  CAS  Google Scholar 

  22. Rowitch DH. Glial specification in the vertebrate neural tube. Nat Rev Neurosci. 2004;5(5):409–19. https://doi.org/10.1038/nrn1389.

    Article  CAS  Google Scholar 

  23. Bergles DE, Richardson WD. Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol. 2015;8(2):a020453. https://doi.org/10.1101/cshperspect.a020453.

    Article  Google Scholar 

  24. Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor KA, et al. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci. 2010;13(5):541–50. https://doi.org/10.1038/nn.2536.

    Article  CAS  Google Scholar 

  25. Tripathi RB, Clarke LE, Burzomato V, Kessaris N, Anderson PN, Attwell D, Richardson WD. Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci. 2011;31(18):6809–19. https://doi.org/10.1523/JNEUROSCI.6474-10.2011.

    Article  CAS  Google Scholar 

  26. Petryniak MA, Potter GB, Rowitch DH, Rubenstein JL. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron. 2007;55(3):417–33.

    Article  CAS  Google Scholar 

  27. Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109(1):61–73.

    Article  CAS  Google Scholar 

  28. Wang E, Dimova N, Sperle K, Huang Z, Lock L, McCulloch MC, et al. Deletion of a splicing enhancer disrupts PLP1/DM20 ratio and myelin stability. Exp Neurol. 2008;214(2):322–30. https://doi.org/10.1016/j.expneurol.2008.09.001.

    Article  CAS  Google Scholar 

  29. He W, Ingraham C, Rising L, Goderie S, Temple S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligoendrocytes to the cerebral cortex during embryogenesis. J Neurosci. 2001;21:8854–62.

    Article  CAS  Google Scholar 

  30. Nery S, Wichterle H, Fishell G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development. 2001;128:527–40.

    Article  CAS  Google Scholar 

  31. Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development. 2001;128:2545–54.

    Article  CAS  Google Scholar 

  32. Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional control of oligodendrogenesis. Glia. 2007;55(13):1287–99.

    Article  Google Scholar 

  33. Koenning M, Jackson S, Hay CM, Faux C, Kilpatrick TJ, Willingham M, Emery B. Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. J Neurosci. 2012;32(36):12528–42. https://doi.org/10.1523/JNEUROSCI.1069-12.2012.

    Article  CAS  Google Scholar 

  34. Silbereis JC, Nobuta H, Tsai HH, Heine VM, McKinsey GL, Meijer DH, et al. Olig1 function is required to repress dlx1/2 and interneuron production in mammalian brain. Neuron. 2014;81(3):574–87. https://doi.org/10.1016/j.neuron.2013.11.024.

    Article  CAS  Google Scholar 

  35. Park HC, Appel B. Delta-Notch signaling regulates oligodendrocyte specification. Development. 2003;130(16):3747–55. https://doi.org/10.1242/dev.00576.

    Article  CAS  Google Scholar 

  36. Crawford AH, Stockley JH, Tripathi RB, Richardson WD, Franklin RJ. Oligodendrocyte progenitors: adult stem cells of the central nervous system? Exp Neurol. 2014;260:50–5. https://doi.org/10.1016/j.expneurol.2014.04.027.

    Article  CAS  Google Scholar 

  37. Schachner M. Cell type-specific surface antigens in the mammalian nervous system. J Neurochem. 1982;39(1):1–8.

    Article  CAS  Google Scholar 

  38. Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, et al. Sonic hedgehog-related oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron. 2000;25:317–29.

    Article  CAS  Google Scholar 

  39. Meijer DH, Kane MF, Mehta S, Liu H, Harrington E, Taylor CM, et al. Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci. 2012;13(12):819–31.

    Article  CAS  Google Scholar 

  40. Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron. 2000;25:331–43.

    Article  CAS  Google Scholar 

  41. Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science. 2004;306(5704):2111–5.

    Article  CAS  Google Scholar 

  42. Lu QR, Cai L, Rowitch D, Cepko CL, Stiles CD. Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex. Nat Neurosci. 2001;4(10):973–4. https://doi.org/10.1038/nn718.

    Article  CAS  Google Scholar 

  43. Paes de Faria J, Kessaris N, Andrew P, Richardson WD, Li H. New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development. BMC Neurosci. 2014;15:12. https://doi.org/10.1186/1471-2202-15-12.

    Article  Google Scholar 

  44. Fu H, Cai J, Clevers H, Fast E, Gray S, Greenberg R, et al. A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci. 2009;29(36):11399–408. https://doi.org/10.1523/JNEUROSCI.0160-09.2009.

    Article  CAS  Google Scholar 

  45. Zhou Q, Choi G, Anderson DJ. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron. 2001;31:791–807.

    Article  CAS  Google Scholar 

  46. Garbern JY, Cambi F, Lewis R, Shy M, Sima A, Kraft G, et al. Peripheral neuropathy caused by proteolipid protein gene mutations. Ann N Y Acad Sci. 1999;883(1):351–65. https://doi.org/10.1111/j.1749-6632.1999.tb08597.x.

    Article  CAS  Google Scholar 

  47. Hobson GM, Kamholz J. Plp1-related disorders. GeneReviews [Internet]. 1999; Retrieved from https://www.ncbi.nlm.nih.gov/books/

  48. Inoue K. Plp1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics. 2005;6:1–16. https://doi.org/10.1007/s10048-004-0207-y.

    Article  CAS  Google Scholar 

  49. Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell. 1985;42:149–55.

    Article  CAS  Google Scholar 

  50. Givogri MI, Bongarzone ER, Schonmann V, Campagnoni AT. Expression and regulation of golli products of myelin basic protein gene during in vitro development of oligodendrocytes. J of Neuroscience Research. 2001;66:679–90.

    Article  CAS  Google Scholar 

  51. Nave KA. Neurological mouse mutants and the genes of myelin. J of Neuroscience Research. 1994;38:607–12.

    Article  CAS  Google Scholar 

  52. Readhead C, Takahashi N, Shine HH, Saavedra R, Sidman R, Hood L. Role of myelin basic protein in the formation of central nervous system myelin. Ann NY Acad Sci. 1990;605:280–5.

    Article  CAS  Google Scholar 

  53. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33(3):366–74. https://doi.org/10.1038/ng1095.

    Article  CAS  Google Scholar 

  54. Reddy UR, Pleasure D. Expression of platelet-derived growth factor (PDGF) and PDGR receptor genes in the developing rat brain. J Neurosci Res. 1992;31:670–7.

    Article  CAS  Google Scholar 

  55. Williams BP, Park JK, Alberta JA, Muhlebach SG, Hwang GY, Roberts TM, Stiles CD. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron. 1997;18:553–62.

    Article  CAS  Google Scholar 

  56. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC. Cell death in the oligodendrocyte lineage. J Neurobio. 1992;23(9):1221–30.

    Article  CAS  Google Scholar 

  57. Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, Richardson WD. Oligodendrocyte population dynamics and the role of PDGR in vivo. Neuron. 1998;20:869–82.

    Article  CAS  Google Scholar 

  58. Pringle NP, Richardson WD. A singularity of PDGR alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development. 1993;117:525–33.

    Article  CAS  Google Scholar 

  59. Phillips RJS. Jimpy, a new totally sex-linked gene in the house mouse. Z Vererbungslehre. 1954;86:322–6.

    CAS  Google Scholar 

  60. Sidman RL, Dickie MM, Appel SH. Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science. 1964;144:30911–311.

    Article  Google Scholar 

  61. Nave KA, Bloom FE, Milner RJ. A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in mouse. J Neurochem. 1987;49:1873–7.

    Article  CAS  Google Scholar 

  62. Griffiths IR, Scott I, McCulloch MC, Barrie JA, McPhilemy K, Cattanach BM. Rumpshaker mouse: a new X-linked mutation affecting myelination: evidence for a defect in PLP expression. J Neurocytol. 1990;19:273–83.

    Article  CAS  Google Scholar 

  63. Al-Saktawi K, McLaughlin M, Klugmann M, Schneider A, Barrie JA, McCulloch MC, et al. Genetic background determines phenotypic severity of the Plp rumpshaker mutation. J Neurosci Res. 2003;72:12–24.

    Article  CAS  Google Scholar 

  64. Chernoff GF. Shiverer: an autosomal recessive mutant mouse with myelin deficiency. J Hered. 1981;72:128.

    Article  CAS  Google Scholar 

  65. Felts PA, Baker TA, Smith KJ. Conduction in segmetally demyelinated mammalian central axons. J Neurosci. 1997;17:7267–77.

    Article  CAS  Google Scholar 

  66. Murphy NA, Franklin RJM. Recruitment of endogenous CNS stem cells for regeneration in demyelinating disease. Prog Brain Res. 2017;231:135–63. https://doi.org/10.1016/bs.pbr.2016.12.013.

    Article  Google Scholar 

  67. Tatar CL, Appikatla S, Bessert DA, Paintlia AS, Singh I, Skoff RP. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain. ASN Neuro. 2010;2(4):e00043. https://doi.org/10.1042/AN20100016.

    Article  CAS  Google Scholar 

  68. Wojtera M, Sikorska B, Sobow T, Liberski PP. Microglial cells in neurodegeneration disorders. Folia Neuropathol. 2005;43:311–21.

    CAS  Google Scholar 

  69. Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 2006;129(3):595–605. https://doi.org/10.1093/brain/awh714.

    Article  Google Scholar 

  70. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346(3):165–73.

    Article  Google Scholar 

  71. Sim FJ, Zhao C, Penderis J, Franklin RJM. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22(7):2451–9.

    Article  CAS  Google Scholar 

  72. Dietz KC, Polanco JJ, Pol SU, Sim FJ. Targeting human oligodendrocyte progenitors for myelin repair. Exp Neurol. 2016;283(Pt B):489–500. https://doi.org/10.1016/j.expneurol.2016.03.017.

    Article  CAS  Google Scholar 

  73. Franklin RJ, Goldman SA. Glia disease and repair—remyelination. Cold Spring Harb Perspect Biol. 2015;7(7):a020594.

    Article  Google Scholar 

  74. Miron VE, Kuhlmann T, Antel JP. Cells of the oligodendroglial lineage, myelination, and remyelination. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2011;1812(2):184–93.

    Article  CAS  Google Scholar 

  75. Zawadzka M, Franklin RJ. Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Curr Opin Neurol. 2007;20(3):294–8.

    Article  Google Scholar 

  76. Chari DM, Zhao C, Kotter MR, Blakemore WF, Franklin RJ. Corticosteroids delay remyelination of experimental demyelination in the rodent central nervous system. J Neurosci Res. 2006;83(4):594–605.

    Article  CAS  Google Scholar 

  77. Kotter MR, Zhao C, van Rooijen N, Franklin RJ. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis. 2005;18(1):166–75.

    Article  CAS  Google Scholar 

  78. Li WW, Setzu A, Zhao C, Franklin RJ. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol. 2005;158(1–2):58–66. https://doi.org/10.1016/j.jneuroim.2004.08.011.

    Article  CAS  Google Scholar 

  79. Maysami S, Nguyen D, Zobel F, Heine S, Hopfner M, Stangel M. Oligodendrocyte precursor cells express a functional chemokine receptor CCR3: implications for myelination. J Neuroimmunol. 2006;178(1–2):17–23. https://doi.org/10.1016/j.jneuroim.2006.05.021.

    Article  CAS  Google Scholar 

  80. Zhang PL, Izrael M, Ainbinder E, Ben-Simchon L, Chebath J, Revel M. Increased myelinating capacity of embryonic stem cell derived oligodendrocyte precursors after treatment by interleukin-6/soluble interleukin-6 receptor fusion protein. Mol Cell Neurosci. 2006a;31(3):387–98. https://doi.org/10.1016/j.mcn.2005.10.014.

    Article  CAS  Google Scholar 

  81. Zhang Y, Taveggia C, Melendez-Vasquez C, Einheber S, Raine CS, Salzer JL, et al. Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation. J Neurosci. 2006b;26(47):12174–85. https://doi.org/10.1523/JNEUROSCI.2289-06.2006.

    Article  CAS  Google Scholar 

  82. Neumann B, Segel M, Chalut KJ, Franklin RJ. Remyelination and ageing: reversing the ravages of time. Mult Scler J. 2019;25(14):1835–41.

    Article  Google Scholar 

  83. Gruchot J, Weyers V, Gottle P, Forster M, Hartung HP, Kury P, Kremer D. The molecular basis for Remyelination failure in multiple sclerosis. Cell. 2019;8(8) https://doi.org/10.3390/cells8080825.

  84. Ineichen BV, Plattner PS, Good N, Martin R, Linnebank M, Schwab ME. Nogo-a antibodies for progressive multiple sclerosis. CNS Drugs. 2017;31(3):187–98.

    Article  CAS  Google Scholar 

  85. Juneja R, Jaggar SI. The physiology of pain. In: Perioperative pain management; 1988.

    Google Scholar 

  86. Woessner J. Overview of pain: classification and concepts. In: Weiner’s pain management: a practical guide for clinicians. Boca Raton, FL: CRC/Informa; 2006. p. 35–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Eisenstat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallego, J., Nevin, M., Eisenstat, D.D. (2023). Myelination. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics