Skip to main content

Deep Learning Model for Prediction of Compound Activities Over a Panel of Major Toxicity-Related Proteins

  • Chapter
  • First Online:
Machine Learning and Deep Learning in Computational Toxicology

Part of the book series: Computational Methods in Engineering & the Sciences ((CMES))

  • 903 Accesses

Abstract

One of the main reasons for high attrition rate for drug candidates is their toxicity mediated through off-target binding. Thus, in vitro screening against major toxicity-related proteins is conventionally used to filter out problematic compounds at an early stage of drug development. However, in vitro testing is expensive and labour intense. Herein, we present a deep learning model that can effectively predict interaction between a small molecule of interest and a panel of 44 toxicity-associated proteins. Contrary to conventional toxicity prediction models (with one model per one endpoint), we employed a unified approach where a single model predicts activity over multiple targets. We demonstrate that this approach is superior, especially for datasets with unbalanced classes. The model is proposed for large-scale toxicity screening as well as for the elucidation of toxicity mechanisms of drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baskin II (2018) Computational toxicology. Springer, Berlin, pp 119–139

    Google Scholar 

  • Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39(15):2887–2893

    Google Scholar 

  • Bendels S, Bissantz C, Fasching B, Gerebtzoff G, Guba W, Kansy M, Migeon J, Mohr S, Peters J-U, Tillier F (2019) Safety screening in early drug discovery: an optimized assay panel. J Pharmacol Toxicol Methods 99:106609

    Article  CAS  Google Scholar 

  • Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11(12):909–922

    Article  CAS  Google Scholar 

  • Dimasi JA (2001) Risks in new drug development: approval success rates for investigational drugs. Clin Pharmacol Ther 69(5):297–307

    Article  CAS  Google Scholar 

  • Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C (2020) hERG toxicity assessment: useful guidelines for drug design. Eur J Med Chem 195:112290

    Article  CAS  Google Scholar 

  • Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053

    Article  CAS  Google Scholar 

  • Harvey AL (2014) Toxins and drug discovery. Toxicon 92:193–200

    Article  CAS  Google Scholar 

  • Hou J, Adhikari B, Cheng J (2018) DeepSF: deep convolutional neural network for mapping protein sequences to folds. Bioinformatics 34(8):1295–1303

    Article  CAS  Google Scholar 

  • Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J (2020) DeepPurpose: a deep learning library for drug–target interaction prediction. Bioinformatics 36(22–23):5545–5547

    CAS  Google Scholar 

  • Idakwo G, Luttrell J, Chen M, Hong H, Zhou Z, Gong P, Zhang C (2018) A review on machine learning methods for in silico toxicity prediction. J Environ Sci Health C 36(4):169–191

    Article  CAS  Google Scholar 

  • Jiang G, Wang W (2017) Error estimation based on variance analysis of k-fold cross-validation. Pattern Recogn 69:94–106

    Article  Google Scholar 

  • Kalliokoski T, Kramer C, Vulpetti A, Gedeck P (2013) Comparability of mixed IC50 data—a statistical analysis. PLoS One 8(4):e61007

    Google Scholar 

  • Kronenberger T, Keminer O, Wrenger C, Windshügel B (2015) Nuclear receptor modulators—current approaches and future perspectives. In: Drug discovery and development-from molecules to medicine

    Google Scholar 

  • Lin K, May AC, Taylor WR (2002) Amino acid encoding schemes from protein structure alignments: multi-dimensional vectors to describe residue types. J Theor Biol 216(3):361–365

    Article  CAS  Google Scholar 

  • Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403):361–367

    Article  CAS  Google Scholar 

  • Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: toxicity prediction using deep learning. Front Environ Sci 3:80

    Article  Google Scholar 

  • Mcmaster A, Ray DW (2008) Drug insight: selective agonists and antagonists of the glucocorticoid receptor. Nat Clin Pract Endocrinol Metab 4(2):91–101

    Article  CAS  Google Scholar 

  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940

    Article  CAS  Google Scholar 

  • Mullard M, Cadé M, Morice S, Dupuy M, Danieau G, Amiaud J, Renault S, Lézot F, Brion R, Thepault RA (2020) Sonic hedgehog signature in pediatric primary bone tumors: effects of the GLI antagonist GANT61 on Ewing’s sarcoma tumor growth. Cancers 12(11):3438

    Article  CAS  Google Scholar 

  • Park K, Williams DP, Naisbitt DJ, Kitteringham NR, Pirmohamed M (2005) Investigation of toxic metabolites during drug development. Toxicol Appl Pharmacol 207(2):425–434

    Article  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    Google Scholar 

  • Peng Y, Zhang Z, Jiang Q, Guan J, Zhou S (2019) Top: towards better toxicity prediction by deep molecular representation learning. IEEE, pp 318–325

    Google Scholar 

  • Rampe D, Brown AM (2013) A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods 68(1):13–22

    Article  CAS  Google Scholar 

  • Redfern WS, Wakefield ID, Prior H, Pollard CE, Hammond TG, Valentin JP (2002) Safety pharmacology—a progressive approach. Fundam Clin Pharmacol 16(3):161–173

    Article  CAS  Google Scholar 

  • Sherman C, Writer NN (2007) The defining features of drug intoxication and addiction can be traced to disruptions in cell-to-cell signaling. NIDA Notes NIH, NIDA 21(4)

    Google Scholar 

  • Smith DA, Schmid EF (2006) Drug withdrawals and the lessons within. Curr Opin Drug Discov Dev 9(1):38–46

    CAS  Google Scholar 

  • Sorkun MC, Mullaj D, Koelman JVA, Er S (2022) Chemplot, a python library for chemical space visualization

    Google Scholar 

  • Suleyman H, Demircan B, Karagoz Y (2007) Anti-inflammatory and side effects of cyclo-oxygenase inhibitors. Pharmacol Rep 59(3):247

    CAS  Google Scholar 

  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30

    Google Scholar 

  • Wang MW, Goodman JM, Allen TE (2020) Machine learning in predictive toxicology: recent applications and future directions for classification models. Chem Res Toxicol 34(2):217–239

    Article  Google Scholar 

  • Weiss A, Freeman W, Heslin K, Barrett M (2018) Adverse drug events in us hospitals, 2010 versus 2014. HCUP Statistical Brief 234

    Google Scholar 

  • Wilbraham L, Sprick RS, Jelfs KE, Zwijnenburg MA (2019) Mapping binary copolymer property space with neural networks. Chem Sci 10(19):4973–4984

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Cherkasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radaeva, M., Pandey, M., MsLati, H., Cherkasov, A. (2023). Deep Learning Model for Prediction of Compound Activities Over a Panel of Major Toxicity-Related Proteins. In: Hong, H. (eds) Machine Learning and Deep Learning in Computational Toxicology. Computational Methods in Engineering & the Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-20730-3_25

Download citation

Publish with us

Policies and ethics