Skip to main content

Pruning-Based Topology Refinement of 3D Mesh Using a 2D Alpha Mask

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13598))

Included in the following conference series:

  • 589 Accesses

Abstract

Image-based 3D reconstruction has increasingly stunning results over the past few years with the latest improvements in computer vision and graphics. Geometry and topology are two fundamental concepts when dealing with 3D mesh structures. But the latest often remains a side issue in the 3D mesh-based reconstruction literature. Indeed, performing per-vertex elementary displacements over a 3D sphere mesh only impacts its geometry and leaves the topological structure unchanged and fixed. Whereas few attempts propose to update the geometry and the topology, all need to lean on costly 3D ground-truth to determine the faces/edges to prune. We present in this work a method that aims to refine the topology of any 3D mesh through a face-pruning strategy that extensively relies upon 2D alpha masks and camera pose information. Our solution leverages a differentiable renderer that renders each face as a 2D soft map. Its pixel intensity reflects the probability of being covered during the rendering process by such a face. Based on the 2D soft-masks available, our method is thus able to quickly highlight all the incorrectly rendered faces for a given viewpoint. Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based (either synthetic or natural) 3D reconstruction pipeline to get complex meshes with a non-spherical topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)

    Google Scholar 

  2. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  3. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17, 167–174 (1998)

    Article  Google Scholar 

  4. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: CVPRW (2019)

    Google Scholar 

  5. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  6. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: CVPR (2018)

    Google Scholar 

  7. Henderson, P., Tsiminaki, V., Lampert, C.: Leveraging 2D data to learn textured 3D mesh generation. In: CVPR (2020)

    Google Scholar 

  8. Jiang, Y., Ji, D., Han, Z., Zwicker, M.: SDFDiff: differentiable rendering of signed distance fields for 3D shape optimization. In: CVPR (2020)

    Google Scholar 

  9. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: ECCV (2018)

    Google Scholar 

  10. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: CVPR (2018)

    Google Scholar 

  11. Li, X., et al.: Self-supervised single-view 3D reconstruction via semantic consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 677–693. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_40

    Chapter  Google Scholar 

  12. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: ICCV (2019)

    Google Scholar 

  13. Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surface without 3D supervision. In: NIPS (2019)

    Google Scholar 

  14. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  15. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11

    Chapter  Google Scholar 

  16. Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J.J.: Total3DUnderstanding: joint layout, object pose and mesh reconstruction for indoor scenes from a single image. In: CVPR (2020)

    Google Scholar 

  17. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR (2020)

    Google Scholar 

  18. Pan, J., Han, X., Chen, W., Tang, J., Jia, K.: Deep mesh reconstruction from single RGB images via topology modification networks. In: ICCV (2019)

    Google Scholar 

  19. Pavllo, D., Spinks, G., Hofmann, T., Moens, M.F., Lucchi, A.: Convolutional generation of textured 3D meshes. In: NeurIPS (2020)

    Google Scholar 

  20. Ravi, N., et al.: Accelerating 3D deep learning with Pytorch3D. arXiv:2007.08501 (2020)

  21. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: CVPR (2020)

    Google Scholar 

  22. Smith, E.J., Fujimoto, S., Romero, A., Meger, D.: Geometrics: exploiting geometric structure for graph-encoded objects. In: ICML (2019)

    Google Scholar 

  23. Sun, X., et al.: Pix3D: dataset and methods for single-image 3D shape modeling. In: CVPR (2018)

    Google Scholar 

  24. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: ECCV (2018)

    Google Scholar 

  25. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. CoRR (2015)

    Google Scholar 

  26. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: NIPS (2016)

    Google Scholar 

  27. Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: Dense 3D object reconstruction from a single depth view. In: TPAMI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaétan Landreau or Mohamed Tamaazousti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landreau, G., Tamaazousti, M. (2022). Pruning-Based Topology Refinement of 3D Mesh Using a 2D Alpha Mask. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics