Skip to main content

Evaluation of Algorithms to Measure a Psychophysical Threshold Using Digital Applications

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2021)

Abstract

The use of digital applications like in mobile phone or on the web to perform psychophysical measurements led to the introduction of algorithms to guide the users in test execution. In this paper we show four algorithms, two already well known: STRICTN and PEST, and a two that we propose: PESTN and BESTN. All the algorithms aim at estimating the level of a psychophysical capability by performing a sequence of simple tests; starting from initial level N, the test is executed until the target level is reached. They differ in the choice of the next steps in the sequences and the stopping condition. We have simulated the application of the algorithms and we have compared them by answering a set of research questions. Finally, we provide guidelines to choose the best algorithm based on the test goal. We found that while STRICTN provides optimal results, it requires the largest number of steps, and this may hinder its use; PESTN can overcome these limits without compromising the final results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption could be relaxed provided that the classification of the stimulus is meaningful.

  2. 2.

    The data and materials for all experiments are available at https://github.com/silviabonfanti/3d4ambAlgorithms.git.

References

  1. Bach, M., Schmitt, C., Kromeier, M., Kommerell, G.: The Freiburg Stereoacuity test: automatic measurement of stereo threshold. Graefe’s Arch. Clin. Exp. Ophthalmol. 239(8), 562–566 (2001). https://doi.org/10.1007/s004170100317

    Article  Google Scholar 

  2. Bonfanti, S., Gargantini, A.: Comparison of algorithms to measure a psychophysical threshold using digital applications: the stereoacuity case study. In: Pesquita, C., Fred, A.L.N., Gamboa, H. (eds.) Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, HEALTHINF, Online Streaming, 11–13 February 2021, vol. 5, pp. 78–86. SCITEPRESS (2021). https://doi.org/10.5220/0010204000780086

  3. Bonfanti, S., Gargantini, A., Esposito, G., Facchin, A., Maffioletti, M., Maffioletti, S.: Evaluation of stereoacuity with a digital mobile application. Graefes Arch. Clin. Exp. Ophthalmol. 259(9), 2843–2848 (2021). https://doi.org/10.1007/s00417-021-05195-z

    Article  Google Scholar 

  4. Bonfanti, S., Gargantini, A., Vitali, A.: A mobile application for the stereoacuity test. In: Duffy, V.G. (ed.) DHM 2015. LNCS, vol. 9185, pp. 315–326. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21070-4_32

    Chapter  Google Scholar 

  5. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  6. Hess, R.F., et al.: A robust and reliable test to measure stereopsis in the clinic. Invest. Opthalmol. Vis. Sci. 57(3), 798 (2016). https://doi.org/10.1167/iovs.15-18690

    Article  Google Scholar 

  7. Jones, P.R., Kalwarowsky, S., Braddick, O.J., Atkinson, J., Nardini, M.: Optimizing the rapid measurement of detection thresholds in infants. J. Vis. 15(11), 2 (2015). https://doi.org/10.1167/15.11.2

    Article  Google Scholar 

  8. Kromeier, M., Schmitt, C., Bach, M., Kommerell, G.: Stereoacuity versus fixation disparity as indicators for vergence accuracy under prismatic stress. Ophthalmic Physiol. Opt. 23(1), 43–49 (2003). https://doi.org/10.1046/j.1475-1313.2003.00089.x

    Article  Google Scholar 

  9. Leek, M.R.: Adaptive procedures in psychophysical research. Percept. Psychophys. 63(8), 1279–1292 (2001). https://doi.org/10.3758/BF03194543

    Article  Google Scholar 

  10. Li, R.W., et al.: Monocular blur alters the tuning characteristics of stereopsis for spatial frequency and size. R. Soc. Open Sci. 3(9), 160273 (2016). https://doi.org/10.1098/rsos.160273

    Article  Google Scholar 

  11. Noether, G.E.: Introduction to Wilcoxon (1945) individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics, pp. 191–195. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_15

    Chapter  Google Scholar 

  12. Stevens, S.S.: Problems and methods of psychophysics. Psychol. Bull. 55(4), 177–196 (1958)

    Article  Google Scholar 

  13. Taylor, M.M., Creelman, C.D.: Pest: efficient estimates on probability functions. J. Acoust. Soc. Am. 41(4A), 782–787 (1967)

    Article  Google Scholar 

  14. Tidbury, L.P., O’Connor, A.R., Wuerger, S.M.: The effect of induced fusional demand on static and dynamic stereoacuity thresholds: the digital synoptophore. BMC Ophthalmol. 19(1) (2019). https://doi.org/10.1186/s12886-018-1000-2

  15. Ushaw, G., et al.: Analysis of soft data for mass provision of stereoacuity testing through a serious game for health. In: Proceedings of the 2017 International Conference on Digital Health, DH 2017. ACM Press (2017). https://doi.org/10.1145/3079452.3079496

  16. Vancleef, K., Read, J.C.A., Herbert, W., Goodship, N., Woodhouse, M., Serrano-Pedraza, I.: Two choices good, four choices better: for measuring stereoacuity in children, a four-alternative forced-choice paradigm is more efficient than two. PLOS ONE 13(7), e0201366 (2018). https://doi.org/10.1371/journal.pone.0201366

    Article  Google Scholar 

  17. Wong, B.P.H., Woods, R.L., Peli, E.: Stereoacuity at distance and near. Optom. Vis. Sci. 79(12), 771–778 (2002). https://doi.org/10.1097/00006324-200212000-00009

    Article  Google Scholar 

  18. Zhang, P., Zhao, Y., Dosher, B.A., Lu, Z.L.: Evaluating the performance of the staircase and quick change detection methods in measuring perceptual learning. J. Vis. 19(7), 14 (2019). https://doi.org/10.1167/19.7.14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Gargantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonfanti, S., Gargantini, A. (2022). Evaluation of Algorithms to Measure a Psychophysical Threshold Using Digital Applications. In: Gehin, C., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2021. Communications in Computer and Information Science, vol 1710. Springer, Cham. https://doi.org/10.1007/978-3-031-20664-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20664-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20663-4

  • Online ISBN: 978-3-031-20664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics