Skip to main content

Prion Strain Interference

  • Chapter
  • First Online:
Prions and Diseases
  • 838 Accesses

Abstract

Prions are transmissible agents comprised of a misfolded protein PrPSc that is post-translationally derived from the normal isoform PrPC. Prion strains are operationally defined by differences in the distribution and intensity of spongiform degeneration and distribution of PrPSc in the CNS. The mechanism by which prion strains are encoded is not known, however, current evidence suggests that the conformation of PrPSc encodes prion strain diversity. In natural prion disease, more than one prion strain can exist in an individual. Prion strains, when present in the same host, can interfere with each other, a process that can influence the emergence of a dominant strain from a mixture and can occur during prion adaptation following interspecies transmission. The parameters and mechanisms that influence prion strain interference are beginning to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atarashi R, Moore R, Sim V, Hughson A, Dorward D, Onwubiko H, Priola S, Caughey B. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods. 2007;4:645–50.

    Article  CAS  Google Scholar 

  • Ayers J, Kincaid AE, Bartz JC. Prion strain targeting independent of strain-specific neuronal tropism. J Virol. 2009;83:81–7.

    Article  CAS  Google Scholar 

  • Ayers JI, Schutt CR, Shikiya RA, Aguzzi A, Kincaid AE, Bartz JC. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog. 2011;7:e1001317.

    Article  CAS  Google Scholar 

  • Babelhadj B, Di Bari MA, Pirisinu L, Chiappini B, Gaouar SBS, Riccardi G, Marcon S, Agrimi U, Nonno R, Vaccari G. Prion disease in dromedary camels, vol. 24. Emerg Infect Dis: Algeria; 2018.

    Google Scholar 

  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C. De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog. 2009;5:e1000421.

    Article  Google Scholar 

  • Bartz JC. Prion strain diversity, vol. 6. Cold Spring Harb Perspect Med; 2016.

    Google Scholar 

  • Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM. Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol. 2000;74:5542–7.

    Article  CAS  Google Scholar 

  • Bartz JC, Aiken JM, Bessen RA. Delay in onset of prion disease for the HY strain of transmissible mink encephalopathy as a result of prior peripheral inoculation with the replication-deficient DY strain. J Gen Virol. 2004;85:265–73.

    Article  CAS  Google Scholar 

  • Bartz JC, Dejoia C, Tucker T, Kincaid AE, Bessen RA. Extraneural prion neuroinvasion without lymphoreticular system infection. J Virol. 2005;79:11858–63.

    Article  CAS  Google Scholar 

  • Bartz JC, Kramer ML, Sheehan MH, Hutter JAL, Ayers JI, Bessen RA, Kincaid AE. Prion interference is due to a reduction in strain-specific PrPSc levels. J Virol. 2007;81:689–97.

    Article  CAS  Google Scholar 

  • Basler K, Oesch B, Scott M, Westaway D, Wälchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 1986;46:417–28.

    Article  CAS  Google Scholar 

  • Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res. 2016;47:88.

    Article  Google Scholar 

  • Beringue V, Vilotte J-L, Laude H. Prion agent diversity and species barrier. Vet Res. 2008;39:47.

    Article  Google Scholar 

  • Bessen R, Marsh R. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol. 1992a;66:2096–101.

    Article  CAS  Google Scholar 

  • Bessen R, Marsh R. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol. 1992b;73:329–34.

    Article  Google Scholar 

  • Bessen RA, Marsh RF. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol. 1994;68:7859–68.

    Article  CAS  Google Scholar 

  • Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995;375:698–700.

    Article  CAS  Google Scholar 

  • Bolton D, McKinley M, Prusiner S. Identification of a protein that purifies with the scrapie prion. Science (New York, NY). 1982;218:1309–11.

    Article  CAS  Google Scholar 

  • Brown P, Cathala F, Castaigne P, Gajdusek DC. 1986. Creutzfeldt–Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol 20:597-602.

    Google Scholar 

  • Bruce M, Will R, Ironside J, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock C. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent [see comments]. Nature. 1997;389:498–501.

    Article  CAS  Google Scholar 

  • Burke CM, Walsh DJ, Mark KMK, Deleault NR, Nishina KA, Agrimi U, Di Bari MA, Supattapone S. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLoS Pathog. 2020;16:e1008495.

    Article  Google Scholar 

  • Cali I, Castellani R, Alshekhlee A, Cohen Y, Blevins J, Yuan J, Langeveld JP, Parchi P, Safar JG, Zou WQ, Gambetti P. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt–Jakob disease: its effect on the phenotype and prion-type characteristics. Brain. 2009;132:2643–58.

    Article  Google Scholar 

  • Cali I, Puoti G, Smucny J, Curtiss PM, Cracco L, Kitamoto T, Occhipinti R, Cohen ML, Appleby BS, Gambetti P. Co-existence of PrP(D) types 1 and 2 in sporadic Creutzfeldt–Jakob disease of the VV subgroup: phenotypic and prion protein characteristics. Sci Rep. 2020;10:1503.

    Article  CAS  Google Scholar 

  • Cassard H, Huor A, Espinosa JC, Douet JY, Lugan S, Aron N, Vilette D, Delisle MB, Marin-Moreno A, Peran P, Beringue V, Torres JM, Ironside JW, Andreoletti O. Prions from sporadic Creutzfeldt–Jakob disease patients propagate as strain mixtures. MBio. 2020;11

    Google Scholar 

  • Caughey B, Raymond GJ. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem. 1991;266:18217–23.

    Article  CAS  Google Scholar 

  • Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol. 1989;63:175–81.

    Article  CAS  Google Scholar 

  • Caughey B, Neary K, Butler R, Ernst D, Perry L, Chesebro B, Race RE. Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J Virol. 1990;64:1093–101.

    Article  CAS  Google Scholar 

  • Caughey B, Raymond GJ, Bessen RA. Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem. 1998;273:32230–5.

    Article  CAS  Google Scholar 

  • Chianini F, Fernández-Borges N, Vidal E, Gibbard L, Pintado B, De Castro J, Priola SA, Hamilton S, Eaton SL, Finlayson J, Pang Y, Steele P, Reid HW, Dagleish MP, Castilla J. Rabbits are not resistant to prion infection. Proc Natl Acad Sci U S A. 2012; https://doi.org/10.1073/pnas.1120076109.

  • Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ, Prusiner SB. Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci U S A. 2009;106:20417–22.

    Article  CAS  Google Scholar 

  • Colby DW, Wain R, Baskakov IV, Legname G, Palmer CG, Nguyen H-OB, Lemus A, Cohen FE, Dearmond SJ, Prusiner SB. Protease-sensitive synthetic prions. PLoS Pathog. 2010;6:e1000736.

    Article  Google Scholar 

  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science. 2007;318:930–6.

    Article  CAS  Google Scholar 

  • Cuillé J, Chelle P-L. La maladie dite tremblante du mouton est-elle inoculable? C R Acad Sci. 1936;203:1552–4.

    Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S. RNA molecules stimulate prion protein conversion. Nature. 2003;425:717–20.

    Article  CAS  Google Scholar 

  • Deleault NR, Harris BT, Rees JR, Supattapone S. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A. 2007;104:9741–6.

    Article  CAS  Google Scholar 

  • Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J, Rees JR, Supattapone S. Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A. 2012a;109:E1938–46.

    Article  CAS  Google Scholar 

  • Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A. 2012b; https://doi.org/10.1073/pnas.1204498109.

  • Diaz-Espinoza R, Morales R, Concha-Marambio L, Moreno-Gonzalez I, Moda F, Soto C. Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo. Mol Psychiatry. 2018;23:777–88.

    Article  CAS  Google Scholar 

  • Dickinson AG. Scrapie in sheep and goats. In: Kimberlin RH, editor. Slow virus diseases of animals and man. Amsterdam: North-Holland Publishing Company; 1976. p. 209–41.

    Google Scholar 

  • Dickinson A, Outram G. The scrapie replication-site hypothesis and its implications for pathogenesis; 1979, vol 2.

    Google Scholar 

  • Dickinson AG, Fraser H, Meikle VMH, Outram GW. Competition between different scrapie agents in mice. Nat New Biol. 1972;237:244–5.

    Article  CAS  Google Scholar 

  • Dickinson AG, Fraser H, McConnell I, Outram GW, Sales DI, Taylor DM. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature. 1975;253:556.

    Article  CAS  Google Scholar 

  • Duque Velasquez C, Kim C, Haldiman T, Kim C, Herbst A, Aiken JM, Safar JG, McKenzie D. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J Biol Chem. 2020; https://doi.org/10.1074/jbc.RA120.012546.

  • Eckland TE, Shikiya RA, Bartz JC. Independent amplification of co-infected long incubation period low conversion efficiency prion strains. PLoS Pathog. 2018;14:e1007323.

    Article  Google Scholar 

  • Fraser H, Dickinson AG. The sequential development of the brain lesions of scrapie in three strains of mice. J Comp Pathol. 1968;78:301–11.

    Article  CAS  Google Scholar 

  • Hirogari Y, Kubo M, Kimura KM, Haritani M, Yokoyama T. Two different scrapie prions isolated in Japanese sheep flocks. Microbiol Immunol. 2003;47:871–6.

    Article  CAS  Google Scholar 

  • Hunter N, Hope J, McConnell I, Dickinson AG. Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenic mice and restriction fragment length polymorphism analysis. J Gen Virol. 1987;68:2711–6.

    Article  CAS  Google Scholar 

  • Kimberlin RH, Walker CA. Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol. 1978;39:487–96.

    Article  CAS  Google Scholar 

  • Kimberlin R, Walker C. Competition between strains of scrapie depends on the blocking agent being infectious. Intervirology. 1985;23:74–81.

    Article  CAS  Google Scholar 

  • Kimberlin R, Cole S, Walker C. Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J Gen Virol. 1987;68:1875–81.

    Article  Google Scholar 

  • Kimberlin R, Walker C, Fraser H. The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol. 1989;70:2017–25.

    Article  Google Scholar 

  • Kretzschmar HA, Stowring LE, Westaway D, Stubblebine WH, Prusiner SB, DeArmond SJ. Molecular cloning of a human prion protein cDNA. DNA. 1986;5:315–24.

    Article  CAS  Google Scholar 

  • Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Beringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog. 2013;9:e1003702.

    Article  Google Scholar 

  • Langenfeld KA, Shikiya RA, Kincaid AE, Bartz JC. Incongruity between prion conversion and incubation period following coinfection. J Virol. 2016;90:5715–23.

    Article  CAS  Google Scholar 

  • Lasmezas C, Deslys J, Demaimay R, Adjou K, Lamoury F, Dormont D, Robain O, Ironside J, Hauw J. BSE transmission to macaques [letter]. Nature. 1996;381:743–4.

    Article  CAS  Google Scholar 

  • Laura Manuelidis ZYL. Virus-like interference in the latency and prevention of Creutzfeldt–Jakob disease. Proc Natl Acad Sci U S A. 2003;100:5360–5.

    Article  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB. Synthetic mammalian prions. Science. 2004;305:673–6.

    Article  CAS  Google Scholar 

  • Makarava N, Ostapchenko V, Savtchenko R, Baskakov I. Conformational switching within individual amyloid fibrils. J Biol Chem. 2009;284:14386–95.

    Article  CAS  Google Scholar 

  • Makarava N, Kovács GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathog. 2011;7:e1002419.

    Article  CAS  Google Scholar 

  • Manuelidis L. Vaccination with an attenuated Creutzfeldt–Jakob disease strain prevents expression of a virulent agent. Proc Natl Acad Sci U S A. 1998;95:2520–5.

    Article  CAS  Google Scholar 

  • Manuelidis L, Lu ZY. Virus-like interference in the latency and prevention of Creutzfeldt–Jakob disease. Proc Natl Acad Sci U S A. 2003;100:5360–5.

    Article  CAS  Google Scholar 

  • Manuelidis L, Yun LZ. Attenuated Creutzfeldt–Jakob Disease agents can hide more virulent infections. Neurosci Lett. 2000;293:163–6.

    Article  CAS  Google Scholar 

  • Marsh RF, Burger D, Hanson RP. Transmissible mink encephalopathy: behavior of the disease agent in mink. Am J Vet Res. 1969a;30:1637–42.

    CAS  Google Scholar 

  • Marsh RF, Burger D, Eckroade R, Zu Rhein GM, Hanson RP. A preliminary report on the experimental host range of the transmissible mink encephalopathy agent. J Infect Dis. 1969b;120:713–9.

    Article  CAS  Google Scholar 

  • Mazza M, Iulini B, Vaccari G, Acutis PL, Martucci F, Esposito E, Peletto S, Barocci S, Chiappini B, Corona C, Barbieri I, Caramelli M, Agrimi U, Casalone C, Nonno R. Co-existence of classical scrapie and Nor98 in a sheep from an Italian outbreak. Res Vet Sci. 2010;88:478–85.

    Article  CAS  Google Scholar 

  • McKinley M, Bolton D, Prusiner S. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983;35:57–62.

    Article  CAS  Google Scholar 

  • Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, Xue R, Leal S, Montagna P, Cortelli P, et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene [see comments]. N Engl J Med. 1992;326:444–9.

    Article  CAS  Google Scholar 

  • Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL, Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure. 2013;21:2061–8.

    Article  CAS  Google Scholar 

  • Nilsson KPR, Joshi-Barr S, Winson O, Sigurdson CJ. Prion strain interactions are highly selective. J Neurosci. 2010;30:12094–102.

    Article  CAS  Google Scholar 

  • Nishina K, Jenks S, Supattapone S. Ionic strength and transition metals control PrPSc protease resistance and conversion-inducing activity. J Biol Chem. 2004;279:40788–94.

    Article  CAS  Google Scholar 

  • Notari S, Capellari S, Giese A, Westner I, Baruzzi A, Ghetti B, Gambetti P, Kretzschmar HA, Parchi P. Effects of different experimental conditions on the PrPSc core generated by protease digestion: implications for strain typing and molecular classification of CJD. J Biol Chem. 2004;279:16797–804.

    Article  CAS  Google Scholar 

  • Notari S, Capellari S, Langeveld J, Giese A, Strammiello R, Gambetti P, Kretzschmar HA, Parchi P. A refined method for molecular typing reveals that co-occurrence of PrP(Sc) types in Creutzfeldt–Jakob disease is not the rule. Lab Investig. 2007;87:1103–12.

    Article  CAS  Google Scholar 

  • Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SBH, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985;40:735–46.

    Article  CAS  Google Scholar 

  • Parchi P, Gambetti P. Human prion diseases. Curr Opin Neurol. 1995;8:286–93.

    Article  CAS  Google Scholar 

  • Parchi P, Strammiello R, Giese A, Kretzschmar H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol. 2011;121:91–112.

    Article  CAS  Google Scholar 

  • Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton DR, DeArmond SJ, Prusiner SB, Scott MR. A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron. 2002;34:921–32.

    Article  CAS  Google Scholar 

  • Polymenidou M, Stoeck K, Glatzel M, Vey M, Bellon A, Aguzzi A. Coexistence of multiple PrPSc types in individuals with Creutzfeldt–Jakob disease. Lancet Neurol. 2005;4:805–14.

    Article  CAS  Google Scholar 

  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–44.

    Article  CAS  Google Scholar 

  • Prusiner SB. Molecular biology of prion diseases. Science. 1991;252:1515–22.

    Article  CAS  Google Scholar 

  • Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13363–83.

    Article  CAS  Google Scholar 

  • Puoti G, Giaccone G, Rossi G, Canciani B, Bugiani O, Tagliavini F. Sporadic Creutzfeldt–Jakob disease: co-occurrence of different types of PrP(Sc) in the same brain. Neurology. 1999;53:2173–6.

    Article  CAS  Google Scholar 

  • Rossi M, Baiardi S, Parchi P. Understanding prion strains: evidence from studies of the disease forms affecting humans. Viruses. 2019;11

    Google Scholar 

  • Saa P, Castilla J, Soto C. Presymptomatic detection of prions in blood. Science. 2006;313:92–4.

    Article  CAS  Google Scholar 

  • Saá P, Sferrazza GF, Ottenberg G, Oelschlegel AM, Dorsey K, Lasmézas CI. Strain-specific role of RNAs in prion replication. J Virol. 2012;86:10494–504.

    Article  Google Scholar 

  • Saborio G, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411:810–3.

    Article  CAS  Google Scholar 

  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med. 1998;4:1157–65.

    Article  CAS  Google Scholar 

  • Schoch G, Seeger H, Bogousslavsky J, Tolnay M, Janzer RC, Aguzzi A, Glatzel M. Analysis of prion strains by PrPSc profiling in sporadic Creutzfeldt–Jakob disease. PLoS Med. 2006;3:e14.

    Article  Google Scholar 

  • Schutt CR, Bartz JC. Prion interference with multiple prion isolates. Prion. 2008;2:61–3.

    Article  Google Scholar 

  • Shikiya RA, Bartz JC. In vitro generation of high titer prions. J Virol. 2011; https://doi.org/10.1128/JVI.06134-11.

  • Shikiya RA, Ayers JI, Schutt CR, Kincaid AE, Bartz JC. Coinfecting prion strains compete for a limiting cellular resource. J Virol. 2010;84:5706–14.

    Article  CAS  Google Scholar 

  • Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SA, Mathiason CK, Kincaid AE, Bartz JC. PrPSc formation and clearance as determinants of prion tropism. PLoS Pathog. 2017;13:e1006298.

    Article  Google Scholar 

  • Soto C, Anderes L, Suardi S, Cardone F, Castilla J, Frossard MJ, Peano S, Saa P, Limido L, Carbonatto M, Ironside J, Torres JM, Pocchiari M, Tagliavini F. Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett. 2005;579:638–42.

    Article  CAS  Google Scholar 

  • Taylor D, Dickinson A, Fraser H, Marsh R. Evidence that transmissible mink encephalopathy agent is biologically inactive in mice. Neuropathol Appl Neurobiol. 1986;12:207–15.

    Article  CAS  Google Scholar 

  • Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner SB. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science. 1996;274:2079–82.

    Article  CAS  Google Scholar 

  • Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Beringue V. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog. 2010;6:e1000859.

    Article  Google Scholar 

  • Uro-Coste E, Cassard H, Simon S, Lugan S, Bilheude J-M, Perret-Liaudet A, Ironside JW, Haïk S, Basset-Leobon C, Lacroux C, Peoc HK, Streichenberger N, Langeveld J, Head MW, Grassi J, Hauw J-J, Schelcher F, Delisle M-B, Andreoletti O. (Beyond PrP9res) type 1/type 2 dichotomy in Creutzfeldt–Jakob disease. PLoS Pathog. 2008;4:e1000029.

    Article  Google Scholar 

  • Vidal E, Fernandez-Borges N, Erana H, Parra B, Pintado B, Sanchez-Martin MA, Charco JM, Ordonez M, Perez-Castro MA, Pumarola M, Mathiason CK, Mayoral T, Castilla J. Dogs are resistant to prion infection, due to the presence of asparagine at position 163 of their prion protein. FASEB J. 2020; https://doi.org/10.1096/fj.201902646R.

  • Wadsworth J, Hill A, Joiner S, Jackson G, Clarke A, Collinge J. Strain-specific prion-protein conformation determined by metal ions. Nat Cell Biol. 1999;1:55–9.

    Article  CAS  Google Scholar 

  • Wells GAH, Scott AC, Johnson CT, Gunning RF, Hancock RD, Jeffery M, et al. A novel progressive spongiform enchephalopathy in cattle. Vet Rec. 1987;121:419–20.

    Article  CAS  Google Scholar 

  • Williams E, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16:89–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Allergy and Infectious Diseases (P01 AI077774) and the National Institute for Neurological Disorders and Stroke (R01 NS103763).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Bartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shikiya, R.A., Bartz, J.C. (2023). Prion Strain Interference. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-20565-1_6

Download citation

Publish with us

Policies and ethics