Skip to main content

The Rich Chemistry of the Copper and Zinc Sites in PrPC

  • Chapter
  • First Online:
Prions and Diseases
  • 811 Accesses

Abstract

Research over the last two decades demonstrates clearly that the function of the cellular form of the prion protein, PrPC, is related to its ability to bind copper and zinc. Zinc (Zn2+) coordination is homogeneous and localized to the octarepeat domain, with participation of the histidine side chains. In contrast, copper uptake is complex and dependent on the oxidation state of the metal ion (Cu+ or Cu2+) and its concentration. This chapter will cover a brief history of PrPC–metal interactions leading to the current structural models, Cu2+-promoted structural features that protect against PrPC neurotoxicity, a recently recognized relationship between Cu2+ coordination and inherited prion disease arising from octarepeat inserts, assessment of PrP-copper electrochemical features, with insight into the basis of PrPC neuroprotection and transmembrane signaling, and recent findings of how copper participates in the regulation of PrPC proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, et al. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry. 2000;39:13760–71.

    Article  CAS  Google Scholar 

  • Bleackley MR, Macgillivray RT. Transition metal homeostasis: from yeast to human disease. Biometals. 2011;24(5):785–809.

    Article  CAS  Google Scholar 

  • Bonomo RP, Impellizzeri G, Pappalardo G, Rizzarelli E, Tabbi G. Copper(II) binding modes in the prion octarepeat PHGGGWGQ: a spectroscopic and voltammetric study. Chem Eur J. 2000;6:4195–202.

    Article  CAS  Google Scholar 

  • Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, et al. Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci. 2010;13(3):310–8.

    Article  CAS  Google Scholar 

  • Brown DR. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans. 2009;21:4069–76.

    Article  Google Scholar 

  • Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. The cellular prion protein binds copper in vivo. Nature. 1997;390:684–7.

    Article  CAS  Google Scholar 

  • Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, et al. Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry. 2002;41:3991–4001.

    Article  CAS  Google Scholar 

  • Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, et al. Copper coordination in the full-length, recombinant prion protein. Biochemistry. 2003;42(22):6794–803.

    Article  CAS  Google Scholar 

  • Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, et al. The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J Am Chem Soc. 2005;127(36):12647–56.

    Article  CAS  Google Scholar 

  • Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem. 1995;270(32):19173–80.

    Article  CAS  Google Scholar 

  • Colombo R. Age and origin of the PRNP E200K mutation causing familial Creutzfeldt-Jacob disease in Libyan Jews. Am J Hum Genet. 2000;67(2):528–31.

    Article  CAS  Google Scholar 

  • Croes EA, Theuns J, Houwing-Duistermaat JJ, Dermaut B, Sleegers K, Roks G, et al. Octapeptide repeat insertions in the prion protein gene and early onset dementia. J Neurol Neurosurg Psychiatry. 2004;75(8):1166–70.

    Article  CAS  Google Scholar 

  • Daniels M, Brown DR. Purification and preparation of prion protein: synaptic superoxide dismutase. Method Enzymol. 2002;349:258–67.

    Article  CAS  Google Scholar 

  • Dong J, Bloom JD, Goncharov V, Chattopadhyay M, Millhauser GL, Lynn DG, et al. Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions. J Biol Chem. 2007.

    Google Scholar 

  • Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S, et al. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem. 2010;285(14):10252–64.

    Article  CAS  Google Scholar 

  • Evans EGB, Millhauser GL. Copper- and zinc-promoted interdomain structure in the prion protein: a mechanism for autoinhibition of the neurotoxic N-terminus. Prog Mol Biol Transl Sci. 2017;150:35–56.

    Article  CAS  Google Scholar 

  • Evans EG, Pushie MJ, Markham KA, Lee HW, Millhauser GL. Interaction between prion protein’s copper-bound octarepeat domain and a charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 2016;24(7):1057–67.

    Article  CAS  Google Scholar 

  • Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M, Cozzio A, et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron. 2000;27(2):399–408.

    Article  CAS  Google Scholar 

  • Garnett AP, Viles JH. Copper binding to the octarepeats of the prion protein. Afffinity, specificity, folding and cooperativity: insights from circular dichroism. J Biol Chem. 2003;278(9):6795–802.

    Article  CAS  Google Scholar 

  • Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, et al. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci U S A. 1991;88(23):10926–30.

    Article  CAS  Google Scholar 

  • Guillot-Sestier MV, Sunyach C, Druon C, Scarzello S, Checler F. The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem. 2009;284(51):35973–86.

    Article  CAS  Google Scholar 

  • Harford C, Sarkar B. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides – metal binding, DNA cleavage, and other properties. Acc Chem Res. 1997;30(3):123–30.

    Article  CAS  Google Scholar 

  • Herms J, Tings T, Gall S, Madlung A, Giese A, Siebert H, et al. Evidence of presynaptic location and function of the prion protein. J Neurosci. 1999;19:8866–75.

    Article  CAS  Google Scholar 

  • Hornshaw MP, McDermott JR, Candy JM. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Comm. 1995a;207:621–9.

    Article  CAS  Google Scholar 

  • Hornshaw MP, McDermott JR, Candy JM, Lakey JH. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995b;214(3):993–9.

    Article  CAS  Google Scholar 

  • Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol. 2005;346(5):1393–407.

    Article  CAS  Google Scholar 

  • Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem. 2005;95(5):1373–86.

    Article  CAS  Google Scholar 

  • Klamt F, Dal-Pizzol F, Conte DA Frota ML Jr, Walz R, Andrades ME, Gomes DA Silva E, et al. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med. 2001;30:1137–44.

    Article  CAS  Google Scholar 

  • Kong Q, Surewicz WK, Petersen RB, Zou W, Chen SG, Gambetti P, et al. Inherited prion diseases. In: Prusiner SB, editor. Prion biology and diseases. Cold Spring Harbor: Cold Spring Harbor Library Press; 2004. p. 673–775.

    Google Scholar 

  • Kramer ML, Kratzin HD, Schmidt B, Romer A, Windl O, Liemann S, et al. Prion protein binds copper within the physiological concentration range. J Biol Chem. 2001;276:16711–9.

    Article  CAS  Google Scholar 

  • Kuffer A, Lakkaraju AK, Mogha A, Petersen SC, Airich K, Doucerain C, et al. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature. 2016;536(7617):464–8.

    Article  CAS  Google Scholar 

  • Leliveld SR, Dame RT, Wuite GJ, Stitz L, Korth C. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions. J Biol Chem. 2006;281(6):3268–75.

    Article  CAS  Google Scholar 

  • Leliveld SR, Stitz L, Korth C. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein. Biochemistry. 2008;47(23):6267–78.

    Article  CAS  Google Scholar 

  • Liang J, Wang W, Sorensen D, Medina S, Ilchenko S, Kiselar J, et al. Cellular prion protein regulates its own alpha-cleavage through ADAM8 in skeletal muscle. J Biol Chem. 2012;287(20):16510–20.

    Article  CAS  Google Scholar 

  • Liu L, Jiang D, McDonald A, Hao Y, Millhauser GL, Zhou F. Copper redox cycling in the prion protein depends critically on binding mode. J Am Chem Soc. 2011;133(31):12229–37.

    Article  CAS  Google Scholar 

  • Markham KA, Roseman GP, Linsley RB, Lee HW, Millhauser GL. Molecular features of the Zn(2+) binding site in the prion protein probed by (113)Cd NMR. Biophys J. 2019;116(4):610–20.

    Article  CAS  Google Scholar 

  • McDonald AJ, Dibble JP, Evans EG, Millhauser GL. A new paradigm for enzymatic control of alpha-cleavage and beta-cleavage of the prion protein. J Biol Chem. 2013.

    Google Scholar 

  • McDonald AJ, Leon DR, Markham KA, Wu B, Heckendorf CF, Schilling K, et al. Altered domain structure of the prion protein caused by Cu(2+) binding and functionally relevant mutations: analysis by cross-linking, MS/MS, and NMR. Structure. 2019;27(6):907–22. e905

    Article  CAS  Google Scholar 

  • McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, et al. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol. 2004;165(1):227–35.

    Article  CAS  Google Scholar 

  • McMahon HE, Mange A, Nishida N, Creminon C, Casanova D, Lehmann S. Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem. 2001;276(3):2286–91.

    Article  CAS  Google Scholar 

  • Millhauser GL. Copper binding in the prion protein. Acc Chem Res. 2004;37(2):79–85.

    Article  CAS  Google Scholar 

  • Millhauser GL. Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem. 2007;58:299–320.

    Article  CAS  Google Scholar 

  • Miura T, Sasaki S, Toyama A, Takeuchi H. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Biochemistry. 2005;44(24):8712–20.

    Article  CAS  Google Scholar 

  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, et al. Signal transduction through prion protein. Science. 2000;289(5486):1925–8.

    Article  CAS  Google Scholar 

  • Nguyen XTA, Tran TH, Cojoc D, Legname G. Copper binding regulates cellular prion protein function. Mol Neurobiol. 2019;56(9):6121–33.

    Article  CAS  Google Scholar 

  • Pauly PC, Harris DA. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998;273:33107–19.

    Article  CAS  Google Scholar 

  • Perera WS, Hooper NM. Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol. 2001;11(7):519–23.

    Article  CAS  Google Scholar 

  • Prusiner SB. Prion biology and diseases. Cold Spring Harbor Laboratory Press: Cold Spring Harbor; 2004.

    Google Scholar 

  • Pushie MJ, Pickering IJ, Martin GR, Tsutsui S, Jirik FR, George GN. Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics Integr Biometal Sci. 2011;3(2):206–14.

    Article  CAS  Google Scholar 

  • Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, et al. Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem. 2003;278(11):9064–72.

    Article  CAS  Google Scholar 

  • Salzano G, Giachin G, Legname G. Structural consequences of copper binding to the prion protein. Cells. 2019;8(8)

    Google Scholar 

  • Schilling KM, Tao L, Wu B, Kiblen JTM, Ubilla-Rodriguez NC, Pushie MJ, et al. Both N-terminal and C-terminal histidine residues of the prion protein are essential for copper coordination and neuroprotective self-regulation. J Mol Biol. 2020.

    Google Scholar 

  • Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 1998;93(2):203–14.

    Article  CAS  Google Scholar 

  • Solomon IH, Huettner JE, Harris DA. Neurotoxic mutants of the prion protein induce spontaneous ionic currents in cultured cells. J Biol Chem. 2010;285(34):26719–26.

    Article  CAS  Google Scholar 

  • Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann S, et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature. 2013.

    Google Scholar 

  • Spevacek AR, Evans EG, Miller JL, Meyer HC, Pelton JG, Millhauser GL. Zinc drives a tertiary fold in the prion protein with familial disease mutation sites at the interface. Structure. 2013;21(2):236–46.

    Article  CAS  Google Scholar 

  • Stevens DJ, Walter ED, Rodriguez A, Draper D, Davies P, Brown DR, et al. Early onset prion disease from octarepeat expansion correlates with copper binding properties. PLoS Pathog. 2009;5(4):e1000390.

    Article  Google Scholar 

  • Stöckel J, Safar J, Wallace AC, Cohen FE, Prusiner SB. Prion protein selectively binds copper(II) ions. Biochemistry. 1998;37:7185–93.

    Article  Google Scholar 

  • Stys PK, You H, Zamponi GW. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol. 2012;590(Pt 6):1357–68.

    Article  CAS  Google Scholar 

  • Sunyach C, Cisse MA, da Costa CA, Vincent B, Checler F. The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J Biol Chem. 2007;282(3):1956–63.

    Article  CAS  Google Scholar 

  • Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996;380(6575):639–42.

    Article  CAS  Google Scholar 

  • Valensin D, Luczkowski M, Mancini FM, Legowska A, Gaggelli E, Valensin G, et al. The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit. Dalton Trans. 2004;9:1284–93.

    Article  Google Scholar 

  • Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A. Unraveling the Cu2+ binding sites in the C-terminal domain of the murine prion protein: a pulse EPR and ENDOR study. J Phys Chem. 2001;105:1631–9.

    Article  Google Scholar 

  • Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol cell. 2007;26(1):1–14.

    Article  CAS  Google Scholar 

  • Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A. 1999;96:2042–7.

    Article  CAS  Google Scholar 

  • Waggoner DJ, Drisaldi B, Bartnikas TB, Casareno RLB, Prohaska JR, Gitlin JD, et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem. 2000;275:7455–8.

    Article  CAS  Google Scholar 

  • Walter ED, Chattopadhyay M, Millhauser GL. The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity. Biochemistry. 2006;45(43):13083–92.

    Article  CAS  Google Scholar 

  • Walter ED, Stevens DJ, Visconte MP, Millhauser GL. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc. 2007;129(50):15440–1.

    Article  CAS  Google Scholar 

  • Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL. Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci. 2009.

    Google Scholar 

  • Watt NT, Hooper NM. Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem Soc Trans. 2005;33(Pt 5):1123–5.

    Article  CAS  Google Scholar 

  • Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, et al. Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun. 2012;3:1134.

    Article  Google Scholar 

  • Watt NT, Griffiths HH, Hooper NM. Neuronal zinc regulation and the prion protein. Prion. 2013;7(3):203–8.

    Article  CAS  Google Scholar 

  • Wu B, McDonald AJ, Markham K, Rich CB, McHugh KP, Tatzelt J, et al. The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. Elife. 2017;6

    Google Scholar 

  • Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC. Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem. 2004;279(21):21948–56.

    Article  CAS  Google Scholar 

  • You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, et al. Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 2012;109(5):1737–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R35 GM131781. The author wishes to thank Professor F. Zhou of California State University, Los Angeles, and Ms. Amy Freiberg, UC Santa Cruz for helpful insights and editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn L. Millhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Millhauser, G.L. (2023). The Rich Chemistry of the Copper and Zinc Sites in PrPC. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-20565-1_2

Download citation

Publish with us

Policies and ethics