Skip to main content

Shape Feature Extraction Techniques for Computer Vision Applications

  • Chapter
  • First Online:
Smart Computer Vision

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 470 Accesses

Abstract

Computer vision (CV) is a branch of artificial intelligence that educates and assists computers in recognizing and comprehending the content of digital images. It is primarily concerned with replicating attributes of a human vision system and empowering computer systems to process and categorize artifacts in digital images similar to humans. CV can be applied in various domains, including robotics, autonomous vehicles, remote sensing, medical diagnosis, pattern recognition, etc. Extracting image features has become a key element in CV applications. For this purpose, we are using shape feature detectors and descriptors. Motivated by the need to understand shape feature detector fundamentals and applications in CV, the present work aims to explore various feature extraction techniques and shape detection approaches required for image retrieval. In addition, real-time applications of shape feature extraction and object recognition techniques are also discussed with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhargava, A., & Bansal, A. (2021). Fruits and vegetables quality evaluation using computer vision: A review. Journal of King Saud University-Computer and Information Sciences, 33(3), 243–257.

    Article  Google Scholar 

  2. Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Computer vision. In Artificial intelligence in construction engineering and management (pp. 231–256). Springer.

    Chapter  Google Scholar 

  3. Dong, C. Z., & Catbas, F. N. (2021). A review of computer vision–based structural health monitoring at local and global levels. Structural Health Monitoring, 20(2), 692–743.

    Article  Google Scholar 

  4. Iqbal, U., Perez, P., Li, W., & Barthelemy, J. (2021). How computer vision can facilitate flood management: A systematic review. International Journal of Disaster Risk Reduction, 53, 102030.

    Article  Google Scholar 

  5. Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003, October). Context-based vision system for place and object recognition. In Computer vision, IEEE international conference on (Vol. 2, pp. 273–273). IEEE Computer Society.

    Google Scholar 

  6. Liang, M., & Hu, X. (2015). Recurrent convolutional neural network for object recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3367–3375).

    Google Scholar 

  7. Kortylewski, A., Liu, Q., Wang, A., Sun, Y., & Yuille, A. (2021). Compositional convolutional neural networks: A robust and interpretable model for object recognition under occlusion. International Journal of Computer Vision, 129(3), 736–760.

    Article  MATH  Google Scholar 

  8. Alom, M. Z., Hasan, M., Yakopcic, C., Taha, T. M., & Asari, V. K. (2021). Inception recurrent convolutional neural network for object recognition. Machine Vision and Applications, 32(1), 1–14.

    Article  Google Scholar 

  9. Cisar, P., Bekkozhayeva, D., Movchan, O., Saberioon, M., & Schraml, R. (2021). Computer vision based individual fish identification using skin dot pattern. Scientific Reports, 11(1), 1–12.

    Article  Google Scholar 

  10. Saba, T. (2021). Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features. Microscopy Research and Technique, 84(6), 1272–1283.

    Article  Google Scholar 

  11. Li, Y., Ma, J., & Zhang, Y. (2021). Image retrieval from remote sensing big data: A survey. Information Fusion, 67, 94–115.

    Article  Google Scholar 

  12. Lucny, A., Dillinger, V., Kacurova, G., & Racev, M. (2021). Shape-based alignment of the scanned objects concerning their asymmetric aspects. Sensors, 21(4), 1529.

    Article  Google Scholar 

  13. Kim, Y. W., & Oh, I. S. (2004). Watermarking text document images using edge direction histograms. Pattern Recognition Letters, 25(11), 1243–1251.

    Article  Google Scholar 

  14. Bakheet, S., & Al-Hamadi, A. (2021). A framework for instantaneous driver drowsiness detection based on improved HOG features and Naïve Bayesian classification. Brain Sciences, 11(2), 240.

    Article  Google Scholar 

  15. Heidari, H., & Chalechale, A. (2021). New weighted mean-based patterns for texture analysis and classification. Applied Artificial Intelligence, 35(4), 304–325.

    Article  Google Scholar 

  16. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  17. Linde, O., & Lindeberg, T. (2012). Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition. Computer Vision and Image Understanding, 116(4), 538–560.

    Article  Google Scholar 

  18. Hazgui, M., Ghazouani, H., & Barhoumi, W. (2021). Evolutionary-based generation of rotation and scale invariant texture descriptors from SIFT keypoints. Evolving Systems, 12, 1–13.

    Article  Google Scholar 

  19. Shapiro, L. S., & Brady, J. M. (1992). Feature-based correspondence: An eigenvector approach. Image and Vision Computing, 10(5), 283–288.

    Article  Google Scholar 

  20. Park, S. H., Lee, K. M., & Lee, S. U. (2000). A line feature matching technique based on an eigenvector approach. Computer Vision and Image Understanding, 77(3), 263–283.

    Article  Google Scholar 

  21. Schiele, B., & Crowley, J. L. (2000). Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 36(1), 31–50.

    Article  Google Scholar 

  22. Chalechale, A., Mertins, A., & Naghdy, G. (2004). Edge image description using angular radial partitioning. IEE Proceedings-Vision, Image and Signal Processing, 151(2), 93–101.

    Article  Google Scholar 

  23. Chalechale, A., & Mertins, A. (2002, Oct). An abstract image representation based on edge pixel neighborhood information (EPNI). In EurAsian conference on information and communication technology (pp. 67–74). Springer.

    MATH  Google Scholar 

  24. Wang, Z., & Zhang, H. (2008, July). Edge linking using geodesic distance and neighborhood information. In 2008 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 151–155). IEEE.

    Chapter  Google Scholar 

  25. Chakravarti, R., & Meng, X. (2009, April). A study of color histogram based image retrieval. In 2009 sixth international conference on information technology: New generations (pp. 1323–1328). IEEE.

    Google Scholar 

  26. Liu, G. H., & Wei, Z. (2020). Image retrieval using the fused perceptual color histogram. Computational Intelligence and Neuroscience, 2020, 8876480.

    Article  Google Scholar 

  27. Mohseni, S. A., Wu, H. R., Thom, J. A., & Bab-Hadiashar, A. (2020). Recognizing induced emotions with only one feature: A novel color histogram-based system. IEEE Access, 8, 37173–37190.

    Article  Google Scholar 

  28. Chaki, J., & Dey, N. (2021). Histogram-based image color features. In Image Color Feature Extraction Techniques (pp. 29–41). Springer.

    Chapter  Google Scholar 

  29. Park, D. K., Jeon, Y. S., & Won, C. S. (2000, November). Efficient use of local edge histogram descriptor. In Proceedings of the 2000 ACM workshops on multimedia (pp. 51–54).

    Chapter  Google Scholar 

  30. Alreshidi, E., Ramadan, R. A., Sharif, M., Ince, O. F., & Ince, I. F. (2021). A comparative study of image descriptors in recognizing human faces supported by distributed platforms. Electronics, 10(8), 915.

    Article  Google Scholar 

  31. Virmani, J., Dey, N., & Kumar, V. (2016). PCA-PNN and PCA-SVM based CAD systems for breast density classification. In Applications of intelligent optimization in biology and medicine (pp. 159–180). Springer.

    Google Scholar 

  32. Chaki, J., Parekh, R., & Bhattacharya, S. (2016, January). Plant leaf recognition using a layered approach. In 2016 international conference on microelectronics, computing and communications (MicroCom) (pp. 1–6). IEEE.

    Google Scholar 

  33. Tian, Z., Dey, N., Ashour, A. S., McCauley, P., & Shi, F. (2018). Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: An affective computing study. Neural Computing and Applications, 30(12), 3733–3748.

    Article  Google Scholar 

  34. Chaki, J., Parekh, R., & Bhattacharya, S. (2018). Plant leaf classification using multiple descriptors: A hierarchical approach. Journal of King Saud University-Computer and Information Sciences, 32, 1158.

    Article  Google Scholar 

  35. AlShahrani, A. M., Al-Abadi, M. A., Al-Malki, A. S., Ashour, A. S., & Dey, N. (2018). Automated system for crops recognition and classification. In Computer vision: Concepts, methodologies, tools, and applications (pp. 1208–1223). IGI Global.

    Chapter  Google Scholar 

  36. Chaki, J., & Parekh, R. (2012). Designing an automated system for plant leaf recognition. International Journal of Advances in Engineering & Technology, 2(1), 149.

    Google Scholar 

  37. Dey, N., Roy, A. B., Pal, M., & Das, A. (2012). FCM based blood vessel segmentation method for retinal images. arXiv preprint arXiv:1209.1181.

    Google Scholar 

  38. Chaki, J., & Parekh, R. (2011). Plant leaf recognition using shape based features and neural network classifiers. International Journal of Advanced Computer Science and Applications, 2(10), 41.

    Article  Google Scholar 

  39. Kulfan, B. M. (2008). Universal parametric geometry representation method. Journal of Aircraft, 45(1), 142–158.

    Article  Google Scholar 

  40. Dey, N., Das, P., Roy, A. B., Das, A., & Chaudhuri, S. S. (2012, Oct). DWT-DCT-SVD based intravascular ultrasound video watermarking. In 2012 world congress on information and communication technologies (pp. 224–229). IEEE.

    Chapter  Google Scholar 

  41. Zhang, D., & Lu, G. (2001, Aug). Content-based shape retrieval using different shape descriptors: A comparative study. In IEEE international conference on multimedia and expo, 2001. ICME 2001 (pp. 289–289). IEEE Computer Society.

    Google Scholar 

  42. Patel, H. N., Jain, R. K., & Joshi, M. V. (2012). Automatic segmentation and yield measurement of fruit using shape analysis. International Journal of Computer Applications, 45(7), 19–24.

    Google Scholar 

  43. Gampala, V., Kumar, M. S., Sushama, C., & Raj, E. F. I. (2020). Deep learning based image processing approaches for image deblurring. Materials Today: Proceedings.

    Google Scholar 

  44. Deivakani, M., Kumar, S. S., Kumar, N. U., Raj, E. F. I., & Ramakrishna, V. (2021). VLSI implementation of discrete cosine transform approximation recursive algorithm. Journal of Physics: Conference Series, 1817(1), 012017 IOP Publishing.

    Google Scholar 

  45. Priyadarsini, K., Raj, E. F. I., Begum, A. Y., &Shanmugasundaram, V. (2020). Comparing DevOps procedures from the context of a systems engineer. Materials Today: Proceedings.

    Google Scholar 

  46. Chaki, J., Dey, N., Moraru, L., & Shi, F. (2019). Fragmented plant leaf recognition: Bag-of-features, fuzzy-color and edge-texture histogram descriptors with multi-layer perceptron. Optik, 181, 639–650.

    Article  Google Scholar 

  47. Chouhan, A. S., Purohit, N., Annaiah, H., Saravanan, D., Raj, E. F. I., & David, D. S. (2021). A real-time gesture based image classification system with FPGA and convolutional neural network. International Journal of Modern Agriculture, 10(2), 2565–2576.

    Google Scholar 

  48. Lee, K. B., & Hong, K. S. (2013). An implementation of leaf recognition system using leaf vein and shape. International Journal of Bio-Science and Bio-Technology, 5(2), 57–66.

    Article  Google Scholar 

  49. Chaki, J., & Parekh, R. (2017, Dec). Texture based coin recognition using multiple descriptors. In 2017 international conference on computer, electrical & communication engineering (ICCECE) (pp. 1–8). IEEE.

    Google Scholar 

  50. Yang, L., Liu, Y., Yu, H., Fang, X., Song, L., Li, D., & Chen, Y. (2021). Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: A review. Archives of Computational Methods in Engineering, 28(4), 2785–2816.

    Article  MathSciNet  Google Scholar 

  51. Foysal, K. H., Chang, H. J., Bruess, F., & Chong, J. W. (2021). SmartFit: Smartphone application for garment fit detection. Electronics, 10(1), 97.

    Article  Google Scholar 

  52. Abbas, A. F., Sheikh, U. U., AL-Dhief, F. T., & Haji Mohd, M. N. (2021). A comprehensive review of vehicle detection using computer vision. Telkomnika, 19(3), 838.

    Article  Google Scholar 

  53. Liu, X., & Yan, W. Q. (2021). Traffic-light sign recognition using capsule network. Multimedia Tools and Applications, 80(10), 15161–15171.

    Article  Google Scholar 

  54. Dewangan, D. K., & Sahu, S. P. (2021). PotNet: Pothole detection for autonomous vehicle system using convolutional neural network. Electronics Letters, 57(2), 53–56.

    Article  Google Scholar 

  55. Das, M. J., Boruah, A., Malakar, J., & Bora, P. (2021). Generating parking area patterns from vehicle positions in an aerial image using mask R-CNN. In Proceedings of international conference on computational intelligence and data engineering (pp. 201–209). Springer.

    Chapter  Google Scholar 

  56. Devaraja, R. R., Maskeliūnas, R., & Damaševičius, R. (2021). Design and evaluation of anthropomorphic robotic hand for object grasping and shape recognition. Computers, 10(1), 1.

    Article  Google Scholar 

  57. Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., et al. (2021). Deep learning-enabled medical computer vision. NPJ Digital Medicine, 4(1), 1–9.

    Article  Google Scholar 

  58. Katija, K., Roberts, P. L., Daniels, J., Lapides, A., Barnard, K., Risi, M., et al. (2021). Visual tracking of deepwater animals using machine learning-controlled robotic underwater vehicles. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp. 860–869).

    Google Scholar 

  59. Tellaeche Iglesias, A., Campos Anaya, M. Á., Pajares Martinsanz, G., & Pastor-López, I. (2021). On combining convolutional autoencoders and support vector machines for fault detection in industrial textures. Sensors, 21(10), 3339.

    Article  Google Scholar 

  60. Cho, S., Choi, M., Gao, Z., & Moan, T. (2021). Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renewable Energy, 169, 1–13.

    Article  Google Scholar 

  61. Almansoori, N. N., Malik, S., & Awwad, F. (2021). A novel approach for fault detection in the aircraft body using image processing. In AIAA Scitech 2021 Forum (p. 0520).

    Google Scholar 

  62. Kim, J. S., Choi, K. N., & Kang, S. W. (2021). Infrared thermal image-based sustainable fault detection for electrical facilities. Sustainability, 13(2), 557.

    Article  Google Scholar 

  63. Raj, E. F. I., & Balaji, M. (2021). Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arabian Journal for Science and Engineering, 46(2), 1313–1332.

    Article  Google Scholar 

  64. Sijini, A. C., Fantin, E., & Ranjit, L. P. (2016). Switched reluctance Motor for Hybrid Electric Vehicle. Middle-East Journal of Scientific Research, 24(3), 734–739.

    Google Scholar 

  65. Raj, E. F. I., & Kamaraj, V. (2013, March). Neural network based control for switched reluctance motor drive. In 2013 IEEE international conference ON emerging trends in computing, communication and nanotechnology (ICECCN) (pp. 678–682). IEEE.

    Chapter  Google Scholar 

  66. Naresh, E., Sureshkumar, K. R., & Sahana, P. S. (2021). Computer vision in healthcare management system through mobile communication. Elementary Education Online, 20(5), 2105–2117.

    Google Scholar 

  67. Pillai, V. G., & Chandran, L. R. (2021). COVID-19 detection using computer vision and deep convolution neural network. Cybernetics, cognition and machine learning applications: Proceedings of ICCCMLA 2020, 323.

    Google Scholar 

  68. Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps (pp. 323–350).

    Google Scholar 

  69. Neri, E., Caramella, D., & Bartolozzi, C. (2008). Image processing in radiology. Medical radiology. Diagnostic imaging. Springer.

    Book  Google Scholar 

  70. Fourcade, A., & Khonsari, R. H. (2019). Deep learning in medical image analysis: A third eye for doctors. Journal of Stomatology, Oral and Maxillofacial Surgery, 120(4), 279–288.

    Article  Google Scholar 

  71. Mohan, G., & Subashini, M. M. (2018). MRI based medical image analysis: Survey on brain tumor grade classification. Biomedical Signal Processing and Control, 39, 139–161.

    Article  Google Scholar 

  72. Tariq, M., Iqbal, S., Ayesha, H., Abbas, I., Ahmad, K. T., & Niazi, M. F. K. (2021). Medical image based breast cancer diagnosis: State of the art and future directions. Expert Systems with Applications, 167, 114095.

    Article  Google Scholar 

  73. Selvathi, D., & Poornila, A. A. (2018). Deep learning techniques for breast cancer detection using medical image analysis. In Biologically rationalized computing techniques for image processing applications (pp. 159–186). Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, E.F.I., Balaji, M. (2023). Shape Feature Extraction Techniques for Computer Vision Applications. In: Kumar, B.V., Sivakumar, P., Surendiran, B., Ding, J. (eds) Smart Computer Vision. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-20541-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20541-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20540-8

  • Online ISBN: 978-3-031-20541-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics